Displaying all 6 publications

Abstract:
Sort:
  1. Vuong NL, Le Duyen HT, Lam PK, Tam DTH, Vinh Chau NV, Van Kinh N, et al.
    BMC Med, 2020 02 17;18(1):35.
    PMID: 32063229 DOI: 10.1186/s12916-020-1496-1
    BACKGROUND: Dengue infection can cause a wide spectrum of clinical outcomes. The severe clinical manifestations occur sufficiently late in the disease course, during day 4-6 of illness, to allow a window of opportunity for risk stratification. Markers of inflammation may be useful biomarkers. We investigated the value of C-reactive protein (CRP) measured early on illness days 1-3 to predict dengue disease outcome and the difference in CRP levels between dengue and other febrile illnesses (OFI).

    METHOD: We performed a nested case-control study using the clinical data and samples collected from the IDAMS-consortium multi-country study. This was a prospective multi-center observational study that enrolled almost 8000 participants presenting with a dengue-like illness to outpatient facilities in 8 countries across Asia and Latin America. Predefined severity definitions of severe and intermediate dengue were used as the primary outcomes. A total of 281 cases with severe/intermediate dengue were compared to 836 uncomplicated dengue patients as controls (ratio 1:3), and also 394 patients with OFI.

    RESULTS: In patients with confirmed dengue, median (interquartile range) of CRP level within the first 3 days was 30.2 mg/L (12.4-61.2 mg/L) (uncomplicated dengue, 28.6 (10.5-58.9); severe or intermediate dengue, 34.0 (17.4-71.8)). Higher CRP levels in the first 3 days of illness were associated with a higher risk of severe or intermediate outcome (OR 1.17, 95% CI 1.07-1.29), especially in children. Higher CRP levels, exceeding 30 mg/L, also associated with hospitalization (OR 1.37, 95% CI 1.14-1.64) and longer fever clearance time (HR 0.84, 95% CI 0.76-0.93), especially in adults. CRP levels in patients with dengue were higher than patients with potential viral infection but lower than patients with potential bacterial infection, resulting in a quadratic association between dengue diagnosis and CRP, with levels of approximately 30 mg/L associated with the highest risk of having dengue. CRP had a positive correlation with total white cell count and neutrophils and negative correlation with lymphocytes, but did not correlate with liver transaminases, albumin, or platelet nadir.

    CONCLUSIONS: In summary, CRP measured in the first 3 days of illness could be a useful biomarker for early dengue risk prediction and may assist differentiating dengue from other febrile illnesses.

  2. Thanh TT, Anh NT, Tham NT, Van HM, Sabanathan S, Qui PT, et al.
    Virol J, 2015 Jun 09;12:85.
    PMID: 26050791 DOI: 10.1186/s12985-015-0316-2
    BACKGROUND: Hand foot and mouth disease (HFMD) is a disease of public health importance across the Asia-Pacific region. The disease is caused by enteroviruses (EVs), in particular enterovirus A71 (EV-A71). In EV-A71-associated HFMD, the infection is sometimes associated with severe manifestations including neurological involvement and fatal outcome. The availability of a robust diagnostic assay to distinguish EV-A71 from other EVs is important for patient management and outbreak response.

    METHODS: We developed and validated an internally controlled one-step single-tube real-time RT-PCR in terms of sensitivity, linearity, precision, and specificity for simultaneous detection of EVs and EV-A71. Subsequently, the assay was then applied on throat and rectal swabs sampled from 434 HFMD patients.

    RESULTS: The assay was evaluated using both plasmid DNA and viral RNA and has shown to be reproducible with a maximum assay variation of 4.41 % and sensitive with a limit of detection less than 10 copies of target template per reaction, while cross-reactivity with other EV serotypes was not observed. When compared against a published VP1 nested RT-PCR using 112 diagnostic throat and rectal swabs from 112 children with a clinical diagnosis of HFMD during 2014, the multiplex assay had a higher sensitivity and 100 % concordance with sequencing results which showed EVs in 77/112 (68.8 %) and EV-A71 in 7/112 (6.3 %). When applied to clinical diagnostics for 322 children, the assay detected EVs in throat swabs of 257/322 (79.8 %) of which EV-A71 was detected in 36/322 (11.2 %) children. The detection rate increased to 93.5 % (301/322) and 13.4 % (43/322) for EVs and EV-A71, respectively, when rectal swabs from 65 throat-negative children were further analyzed.

    CONCLUSION: We have successfully developed and validated a sensitive internally controlled multiplex assay for rapid detection of EVs and EV-A71, which is useful for clinical management and outbreak control of HFMD.

  3. Vuong NL, Lam PK, Ming DKY, Duyen HTL, Nguyen NM, Tam DTH, et al.
    Elife, 2021 06 22;10.
    PMID: 34154705 DOI: 10.7554/eLife.67460
    Background: Early identification of severe dengue patients is important regarding patient management and resource allocation. We investigated the association of 10 biomarkers (VCAM-1, SDC-1, Ang-2, IL-8, IP-10, IL-1RA, sCD163, sTREM-1, ferritin, CRP) with the development of severe/moderate dengue (S/MD).

    Methods: We performed a nested case-control study from a multi-country study. A total of 281 S/MD and 556 uncomplicated dengue cases were included.

    Results: On days 1-3 from symptom onset, higher levels of any biomarker increased the risk of developing S/MD. When assessing together, SDC-1 and IL-1RA were stable, while IP-10 changed the association from positive to negative; others showed weaker associations. The best combinations associated with S/MD comprised IL-1RA, Ang-2, IL-8, ferritin, IP-10, and SDC-1 for children, and SDC-1, IL-8, ferritin, sTREM-1, IL-1RA, IP-10, and sCD163 for adults.

    Conclusions: Our findings assist the development of biomarker panels for clinical use and could improve triage and risk prediction in dengue patients.

    Funding: This study was supported by the EU's Seventh Framework Programme (FP7-281803 IDAMS), the WHO, and the Bill and Melinda Gates Foundation.

  4. Tan le V, Tuyen NT, Thanh TT, Ngan TT, Van HM, Sabanathan S, et al.
    J Virol Methods, 2015 Apr;215-216:30-6.
    PMID: 25704598 DOI: 10.1016/j.jviromet.2015.02.011
    Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples.
  5. Geoghegan JL, Tan le V, Kühnert D, Halpin RA, Lin X, Simenauer A, et al.
    J Virol, 2015 Sep;89(17):8871-9.
    PMID: 26085170 DOI: 10.1128/JVI.00706-15
    Enterovirus A71 (EV-A71) is a major cause of hand, foot, and mouth disease (HFMD) and is particularly prevalent in parts of Southeast Asia, affecting thousands of children and infants each year. Revealing the evolutionary and epidemiological dynamics of EV-A71 through time and space is central to understanding its outbreak potential. We generated the full genome sequences of 200 EV-A71 strains sampled from various locations in Viet Nam between 2011 and 2013 and used these sequence data to determine the evolutionary history and phylodynamics of EV-A71 in Viet Nam, providing estimates of the effective reproduction number (Re) of the infection through time. In addition, we described the phylogeography of EV-A71 throughout Southeast Asia, documenting patterns of viral gene flow. Accordingly, our analysis reveals that a rapid genogroup switch from C4 to B5 likely took place during 2012 in Viet Nam. We show that the Re of subgenogroup C4 decreased during the time frame of sampling, whereas that of B5 increased and remained >1 at the end of 2013, corresponding to a rise in B5 prevalence. Our study reveals that the subgenogroup B5 virus that emerged into Viet Nam is closely related to variants that were responsible for large epidemics in Malaysia and Taiwan and therefore extends our knowledge regarding its associated area of endemicity. Subgenogroup B5 evidently has the potential to cause more widespread outbreaks across Southeast Asia.

    IMPORTANCE: EV-A71 is one of many viruses that cause HFMD, a common syndrome that largely affects infants and children. HFMD usually causes only mild illness with no long-term consequences. Occasionally, however, severe infection may arise, especially in very young children, causing neurological complications and even death. EV-A71 is highly contagious and is associated with the most severe HFMD cases, with large and frequent epidemics of the virus recorded worldwide. Although major advances have been made in the development of a potential EV-A71 vaccine, there is no current prevention and little is known about the patterns and dynamics of EV-A71 spread. In this study, we utilize full-length genome sequence data obtained from HFMD patients in Viet Nam, a geographical region where the disease has been endemic since 2003, to characterize the phylodynamics of this important emerging virus.

  6. Khor CC, Do T, Jia H, Nakano M, George R, Abu-Amero K, et al.
    Nat Genet, 2016 May;48(5):556-62.
    PMID: 27064256 DOI: 10.1038/ng.3540
    Primary angle closure glaucoma (PACG) is a major cause of blindness worldwide. We conducted a genome-wide association study (GWAS) followed by replication in a combined total of 10,503 PACG cases and 29,567 controls drawn from 24 countries across Asia, Australia, Europe, North America, and South America. We observed significant evidence of disease association at five new genetic loci upon meta-analysis of all patient collections. These loci are at EPDR1 rs3816415 (odds ratio (OR) = 1.24, P = 5.94 × 10(-15)), CHAT rs1258267 (OR = 1.22, P = 2.85 × 10(-16)), GLIS3 rs736893 (OR = 1.18, P = 1.43 × 10(-14)), FERMT2 rs7494379 (OR = 1.14, P = 3.43 × 10(-11)), and DPM2-FAM102A rs3739821 (OR = 1.15, P = 8.32 × 10(-12)). We also confirmed significant association at three previously described loci (P < 5 × 10(-8) for each sentinel SNP at PLEKHA7, COL11A1, and PCMTD1-ST18), providing new insights into the biology of PACG.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links