To investigate the acute toxicity of cadmium and lead on larvae of two tropical Chironomid species, Chironomus kiiensis (C. kiiensis) Tokunaga and Chironomus javanus (C. javanus) Kieffer.
Thrips are key pests of mango, Mangifera indica (L.), in Malaysia, including the Northern Peninsular. As Penang has year-round equatorial climate and high of rainfall, the populations of thrips may be subject to variations in composition and size. With a goal of developing an appropriate control strategy, a survey was conducted in Penang to determine species composition and abundance in relation to some environmental factors. Sprayed and unsprayed orchards were sampled on weekly basis through two flowering seasons of 2009 using CO(2) collection technique. Larval population falling into the ground to pupate and adults emerging from the soil were investigated in both orchards. Thrips hawaiiensis (Morgan) and Scirtothrips dorsalis (Hood) were the most prevalent species in the sprayed and the unsprayed orchards, respectively. The abundance of thrips was high during the flowering period of the dry season and decreased during the flowering period of the rainy season. This latter period coincided with decreased temperature and increased relative humidity. Percentage of adult emergence from the soil was lower in the rainy season than recorded in the dry season in both orchards. Taken together, these observations suggest that T. hawaiiensis and S. dorsalis are the main thrips species pests of mango panicles in Penang. Direct control with insecticides focusing on these two species may help to reduce cosmetic injuries and other damages on mango fruits.
Morphological deformities in parts of the head capsule of Chironomus spp. larvae inhabiting three polluted rivers (Permatang Rawa [PRR], Pasir [PR], and Kilang Ubi [KUR]) in the Juru River Basin, northeastern peninsular Malaysia, were studied. Samples of the fourth-instar larvae at one location in each river were collected monthly from November 2007 to March 2008 and examined for deformities of the mentum, antenna, mandible, and epipharyngis. At each sample location, in situ measurements of water depth, river width, water pH, dissolved oxygen, and water temperature were made. Samples of river water and benthic sediments were also collected monthly from each larval sample location in each river and taken to the laboratory for appropriate analysis. Total suspended solids (TSSs), ammonium-N, nitrate-N, phosphate-P, chloride, sulfate, and aluminum content in water were analyzed. Total organic matter and nonresidual metals in the sediment samples were also analyzed. Among the three rivers, the highest mean deformity (47.17%) was recorded in larvae collected from KUR that received industrial discharges from surrounding garment and rubber factories, followed by PRR (33.71%) receiving primarily residues of fertilizers and pesticides from adjacent rice fields, and PR (30.34%) contaminated primarily by anthropogenic wastes from the surrounding residential areas. Among the various head capsule structures, deformity of the mentum was strongly reflective of environmental stress and amounted to 27.9, 20.87, and 30.19% in the PRR, PR, and KUR, respectively. Calculated Lenat's toxic score index satisfactorily explained the influence of prevailing environmental variables on the severity of mentum deformities. Redundancy analysis and forward selection selected TSSs, sediment Zn, Mn, Cu, and Ni, and water pH, dissolved oxygen, water temperature, total organic matter, nitrate-N, chloride, phosphate-P, ammonium-N, sulfate, and aluminum as parameters that significantly affected some proportion of deformities. The total deformities correlated closely with deformities of mentum but only weakly with deformities in other parts of head. The total deformity incidence was strongly correlated with high contents of sediment Mn and Ni. The mentum and epipharyngis deformities incidence was highly correlated with an increase of TSSs, total aluminum, and ammonium-N and a decrease in pH and dissolved oxygen.
A burned human remain was found outdoor (5º 27' N, 100º 16' E) in Penang Island. The deceased was last seen alive on 23 April 2010 at 2230 h and was found burned on 24 April 2010 at 1920 h. Larval aggregation of second instar Chrysomya megacephala was observed on the chest of the deceased.
The life history of the male and female of the indoor forensic fly, Synthesiomyia nudiseta was studied under fluctuating temperature of indoor environments and analysed based on the age-stage and two sex life table. The life cycle of S. nudiseta was 14.0±1.0 days from the egg stage to adult emergence. The population parameters calculated were; net reproduction rate (R(o)= 108.6), mean generation time (T(o)= 12.2), intrinsic rate of increase (r(m)= 0.38), and finite rate of increase (λ= 1.46). The pre-oviposition period (APOP) was 6.0± 0.1 days. All population parameters suggested that S. nudiseta exhibits the r-strategist characteristics.
The pupae of Desmometopa sp. (Diptera: Milichiidae) were collected from a human corpse found indoor in active decay stage together with the larvae of Sarcophagidae, Synthesiomyia nudiseta (Wulp), Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart). This research note is the first report of the Desmometopa sp. recovered from a human corpse in Malaysia.
A human corpse at an advanced stage of decomposition was found in a house in the residential area of Bukit Mertajam, Penang, Malaysia. Entomological specimens were collected during the post-mortem and the live specimens were subsequently reared at room temperature. The time of death was estimated to have been 14 days previous to the discovery of the body based on the police investigation. Both adult and larvae of the beetle Dermestes ater (De Geer) were found to be infesting the corpse and from the stage of decomposition of the body and the estimated time of death it would appear that infestation may have begun at a relatively early stage of decomposition.
Larvae of the Synthesiomyia nudiseta (Wulp) were collected from a decomposed human corpse at the Department of Forensic Medicine, Penang Hospital. A colony of this species was established and the eggs were collected for rearing. The developmental times, rearing temperatures, and relative humidity were recorded twice daily from the time the eggs collected until adult emergence. An average of 5 larvae were randomly collected from the rearings twice daily, warm-water killed and preserved in Kahle's solution. The larval instar stages were determined by observing the number of posterior spiracular slits and the length of the preserved larvae were measured. When the larval life cycle was completed, the accumulated developmental times were calculated. A total of 8 replicates were carried out. The temperature of the rearing room was 28.5+/-1.5 degrees Celcius while the relative humidity was within 67-85%. The total developmental time for S. nudiseta was 322+/-19 hours (13.4+/-0.8 days).
A semi laboratory experiment using 3 cohorts of Aedes albopictus adults was performed to obtain age-specific mortality and fecundity information and to derive statistical estimates of some population growth parameters. Life expectancy was calculated for both males and females. The following population parameters were estimated: intrinsic rate of increase (rm= 0.21), net reproductive (replacement) rate (Ro= 68.70), age at mean cohort reproduction (To=10.55 days), birth rate (B=0.23), death rate (D=0.02) and generation time (G=20.14 days). The high rm/B (0.91) and B/D (11.50) ratios indicated the high colonizing ability of Ae. albopictus in nature.
A field study on foraging activity and proteinacous food preference was performed on the tropical fire ant (Solenopsis geminata) (Fabricius) at the School of Biological Sciences and Desasiswa Bakti Permai, Universiti Sains Malaysia (USM), Penang. Foraging activity studies of 4 colonies of S. geminata were conducted in the field for 24 hours. Foraging activity significantly increased 4 hours before sunset and maximum foraging occurred at midnight until early morning. Three types of proteinacous food; anchovy, meat and egg yolk were tested among the five colonies of S. geminata in the field. The egg yolk was the most preferred food (100%) followed by meat (31%) and anchovy (15%).
Larvae of Aedes albopictus Skuse typically inhabit natural and artificial containers. Since these larval habitats are replenished by rainfall, Ae. albopictus may experience increased loss of immature stages in areas with high levels of rainfall. In this study, we investigated the effects of rainfall and container water level on population density, and oviposition activity of Ae. albopictus. In field and laboratory experiments, we found that rainfall resulted in the flushing of breeding habitats. Excess rain negatively impacted larval and pupal retention, especially in small habitats. When filled with water to overflowing, container habitats were significantly repellent to ovipositing females. Taken together, these data suggest that rainfall triggers population loss of Ae. albopictus and related species through a direct detrimental effect (flushing out) and an indirect effect (ovipositional repellency).