Displaying all 3 publications

Abstract:
Sort:
  1. Cheng JY, Samudram H, Lee Lai Ling C, Nadarajan VS
    Transfus Med, 2022 Dec;32(6):484-491.
    PMID: 36239101 DOI: 10.1111/tme.12924
    OBJECTIVES: To evaluate the performance and utility of a time-temperature indicator (TTI) to determine the cumulative exposure time (CET) of red cell components (RCC) to temperatures above 10°C occurring within and outside the transfusion laboratory.

    BACKGROUND AND OBJECTIVES: Blood centres often use the '30 or 60-min rule' for accepting RCC exposed to room temperature (RT) back into inventory. Effective monitoring of these temperature deviations is however lacking.

    MATERIALS AND METHODS: A Timestrip PLUS® TP153 10°C (TS + 10) TTI was attached to RCC units after preparation of the unit in the blood bank or on issue to the ward, to track the CET > 10°C during laboratory processing and outside the transfusion laboratory.

    RESULTS: The mean CET of 153 RCC tracked within the laboratory was 56 min. Sixty-four (41.8%) and 34 (22.2%) of RCC had core temperature (CT) >10°C for more than 30 and 60 min, respectively. Among the 69 RCC that were returned unused, 27 (39.1%), 17 (24.6%) and 5 (7.2%) RCC units had CT >10°C for more than 30, 60 and 120 min respectively.

    CONCLUSION: A large proportion of RCC have CT >10°C exceeding 30 min during handling within the transfusion laboratory, as well as when RCC are returned unused from transfusion locations. Corrective measures should be implemented to better manage the cold chain to avoid undesirable consequences to blood transfusion. A temperature sensitive device that can also indicate CET can be employed to objectively monitor the period that RCC remained at a CT that exceeds 10°C.

  2. Chan WK, Nik Mustapha NR, Mahadeva S, Wong VW, Cheng JY, Wong GL
    J Gastroenterol Hepatol, 2018 Oct;33(10):1787-1794.
    PMID: 29603365 DOI: 10.1111/jgh.14150
    BACKGROUND AND AIM: There are limited studies on controlled attenuation parameter (CAP) using Fibroscan XL probe for the diagnosis of hepatic steatosis grade. The aim of this study was to determine whether previously defined optimal cut-offs for CAP using the M probe could be applied for the XL probe.

    METHODS: Adult patients with chronic liver disease who had a liver biopsy and examination with both the M and XL probes were included. Previously defined optimal cut-offs for CAP using the M probe were used for the diagnosis of steatosis grades ≥S1, ≥S2, and S3 (248, 268, and 280 dB/m, respectively).

    RESULTS: Data for 180 patients were analyzed (mean age 53.7 ± 10.8 years; central obesity 84.5%; non-alcoholic fatty liver disease 86.7%). The distribution of steatosis grades was S0, 9.4%; S1, 28.3%; S2, 43.9%, and S3, 18.3%. The sensitivity, specificity, positive predictive value, and negative predictive value of CAP using the M/XL probe for the diagnosis of steatosis grade ≥S1 was 93.9%/93.3%, 58.8%/58.8%, 95.6%/95.6%, and 50.0%/47.6%, respectively. These values were 94.6%/94.6%, 41.2%/44.1%, 72.6%/73.6%, and 82.4%/83.3%, respectively, for ≥S2, and 87.9%/87.9%, 27.2%/27.9%, 21.3%/21.5%, and 90.9%/91.1%, respectively, for S3.

    CONCLUSION: The same cut-off values for CAP may be used for the M and XL probes for the diagnosis of hepatic steatosis grade.

  3. Malaspinas AS, Westaway MC, Muller C, Sousa VC, Lao O, Alves I, et al.
    Nature, 2016 Oct 13;538(7624):207-214.
    PMID: 27654914 DOI: 10.1038/nature18299
    The population history of Aboriginal Australians remains largely uncharacterized. Here we generate high-coverage genomes for 83 Aboriginal Australians (speakers of Pama-Nyungan languages) and 25 Papuans from the New Guinea Highlands. We find that Papuan and Aboriginal Australian ancestors diversified 25-40 thousand years ago (kya), suggesting pre-Holocene population structure in the ancient continent of Sahul (Australia, New Guinea and Tasmania). However, all of the studied Aboriginal Australians descend from a single founding population that differentiated ~10-32 kya. We infer a population expansion in northeast Australia during the Holocene epoch (past 10,000 years) associated with limited gene flow from this region to the rest of Australia, consistent with the spread of the Pama-Nyungan languages. We estimate that Aboriginal Australians and Papuans diverged from Eurasians 51-72 kya, following a single out-of-Africa dispersal, and subsequently admixed with archaic populations. Finally, we report evidence of selection in Aboriginal Australians potentially associated with living in the desert.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links