Displaying all 2 publications

Abstract:
Sort:
  1. Soon TN, Chia AYY, Yap WH, Tang YQ
    Protein Pept Lett, 2020;27(9):823-830.
    PMID: 32271692 DOI: 10.2174/0929866527666200409102747
    Despite technological advancement, there is no 100% effective treatment against metastatic cancer. Increasing resistance of cancer cells towards chemotherapeutic drugs along with detrimental side effects remained a concern. Thus, the urgency in developing new anticancer agents has been raised. Anticancer peptides have been proven to display potent activity against a wide variety of cancer cells. Several mode of actions describing their cytostatic and cytotoxic effect on cancer cells have been proposed which involves cell surface binding leading to membranolysis or internalization to reach their intracellular target. Understanding the mechanism of action of these anticancer peptides is important in achieving full therapeutic success. In the present article, we discuss the anticancer action of peptides accompanied by the mechanisms underpinning their toxicity to cancer cells.
  2. Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY
    Life Sci, 2021 Jul 01;276:119129.
    PMID: 33515559 DOI: 10.1016/j.lfs.2021.119129
    Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which is mainly characterized by progressive impairment in cognition, emotion, language and memory in older population. Considering the impact of AD, formulations of pharmaceutical drugs and cholinesterase inhibitors have been widely propagated, receiving endorsement by FDA as a form of AD treatment. However, these medications were gradually discovered to be ineffective in removing the root of AD pathogenesis but merely targeting the symptoms so as to improve a patient's cognitive outcome. Hence, a search for better disease-modifying alternatives is put into motion. Having a clear understanding of the neuroprotective mechanisms and diverse properties undertaken by specific genes, antibodies and nanoparticles is central towards designing novel therapeutic agents. In this review, we provide a brief introduction on the background of Alzheimer's disease, the biology of blood-brain barrier, along with the potentials and drawbacks associated with current therapeutic treatment avenues pertaining to gene therapy, immunotherapy and nanotherapy for better diagnosis and management of Alzheimer's disease.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links