Infections caused by multidrug resistant Salmonella strains are problematic in swine and are entering human food chains. Bacteriophages (phages) could be used to complement or replace antibiotics to reduce infection within swine. Here, we extensively characterised six broad host range lytic Salmonella phages, with the aim of developing a phage cocktail to prevent or treat infection. Intriguingly, the phages tested differed by one to five single nucleotide polymorphisms. However, there were clear phenotypic differences between them, especially in their heat and pH sensitivity. In vitro killing assays were conducted to determine the efficacy of phages alone and when combined, and three cocktails reduced bacterial numbers by ~2 × 103 CFU/mL within two hours. These cocktails were tested in larvae challenge studies, and prophylactic treatment with phage cocktail SPFM10-SPFM14 was the most efficient. Phage treatment improved larvae survival to 90% after 72 h versus 3% in the infected untreated group. In 65% of the phage-treated larvae, Salmonella counts were below the detection limit, whereas it was isolated from 100% of the infected, untreated larvae group. This study demonstrates that phages effectively reduce Salmonella colonisation in larvae, which supports their ability to similarly protect swine.
We characterized the complete genome sequence of the lytic Salmonella enterica bacteriophage PRF-SP1, isolated from Penang National Park, a conserved rainforest in northern Malaysia. The novel phage species from the Autographiviridae family has a 39,966-bp double-stranded DNA (dsDNA) genome containing 49 protein-encoding genes and shares 90.96% similarity with Escherichia phage DY1.
Clostridioides difficile causes antibiotic-induced diarrhoea and pseudomembranous colitis in humans and animals. Current conventional treatment relies solely on antibiotics, but C. difficile infection (CDI) cases remain persistently high with concomitant increased recurrence often due to the emergence of antibiotic-resistant strains. Antibiotics used in treatment also induce gut microbial imbalance; therefore, novel therapeutics with improved target specificity are being investigated. Bacteriophages (phages) kill bacteria with precision, hence are alternative therapeutics for the targeted eradication of the pathogen. Here, we review current progress in C. difficile phage research. We discuss tested strategies of isolating C. difficile phages directly, and via enrichment methods from various sample types and through antibiotic induction to mediate prophage release. We also summarise phenotypic phage data that reveal their morphological, genetic diversity, and various ways they impact their host physiology and pathogenicity during infection and lysogeny. Furthermore, we describe the therapeutic development of phages through efficacy testing in different in vitro, ex vivo and in vivo infection models. We also discuss genetic modification of phages to prevent horizontal gene transfer and improve lysis efficacy and formulation to enhance stability and delivery of the phages. The goal of this review is to provide a more in-depth understanding of C. difficile phages and theoretical and practical knowledge on pre-clinical, therapeutic evaluation of the safety and effectiveness of phage therapy for CDI.
Salmonella infections across the globe are becoming more challenging to control due to the emergence of multidrug-resistant (MDR) strains. Lytic phages may be suitable alternatives for treating these multidrug-resistant Salmonella infections. Most Salmonella phages to date were collected from human-impacted environments. To further explore the Salmonella phage space, and to potentially identify phages with novel characteristics, we characterized Salmonella-specific phages isolated from the Penang National Park, a conserved rainforest. Four phages with a broad lytic spectrum (kills >5 Salmonella serovars) were further characterized; they have isometric heads and cone-shaped tails, and genomes of ~39,900 bp, encoding 49 CDSs. As the genomes share a <95% sequence similarity to known genomes, the phages were classified as a new species within the genus Kayfunavirus. Interestingly, the phages displayed obvious differences in their lytic spectrum and pH stability, despite having a high sequence similarity (~99% ANI). Subsequent analysis revealed that the phages differed in the nucleotide sequence in the tail spike proteins, tail tubular proteins, and portal proteins, suggesting that the SNPs were responsible for their differing phenotypes. Our findings highlight the diversity of novel Salmonella bacteriophages from rainforest regions, which can be explored as an antimicrobial agent against MDR-Salmonella strains.
Antimicrobial resistance (AMR) is a major problem globally. The main bacterial organisms associated with urinary tract infection (UTI) associated sepsis are E. coli and Klebsiella along with Enterobacter species. These all have AMR strains known as ESBL (Extended Spectrum Beta-Lactamase), which are featured on the WHO priority pathogens list as "critical" for research. Bacteriophages (phages), as viruses that can infect and kill bacteria, could provide an effective tool to tackle these AMR strains. There is currently no "gold standard" for developing a phage cocktail. Here we describe a novel approach to develop an effective phage cocktail against a set of ESBL-producing E. coli and Klebsiella largely isolated from patients in United Kingdom hospitals. By comparing different measures of phage efficacy, we show which are the most robust, and suggest an efficient screening cascade that could be used to develop phage cocktails to target other AMR bacterial species. A target panel of 38 ESBL-producing clinical strains isolated from urine samples was collated and used to test phage efficacy. After an initial screening of 68 phages, six were identified and tested against these 38 strains to determine their clinical coverage and killing efficiency. To achieve this, we assessed four different methods to assess phage virulence across these bacterial isolates. These were the Direct Spot Test (DST), the Efficiency of Plating (EOP) assay, the planktonic killing assay (PKA) and the biofilm assay. The final ESBL cocktail of six phages could effectively kill 23/38 strains (61%), for Klebsiella 13/19 (68%) and for E. coli 10/19 (53%) based on the PKA data. The ESBL E. coli collection had six isolates from the prevalent UTI-associated ST131 sequence type, five of which were targeted effectively by the final cocktail. Of the four methods used to assess phage virulence, the data suggests that PKAs are as effective as the much more time-consuming EOPs and data for the two assays correlates well. This suggests that planktonic killing is a good proxy to determine which phages should be used in a cocktail. This assay when combined with the virulence index also allows "phage synergy" to inform cocktail design.