Displaying all 2 publications

Abstract:
Sort:
  1. Razmara J, Deris SB, Parvizpour S
    Comput Biol Med, 2013 Oct;43(10):1614-21.
    PMID: 24034753 DOI: 10.1016/j.compbiomed.2013.07.022
    The structural comparison of proteins is a vital step in structural biology that is used to predict and analyse a new unknown protein function. Although a number of different techniques have been explored, the study to develop new alternative methods is still an active research area. The present paper introduces a text modelling-based technique for the structural comparison of proteins. The method models the secondary and tertiary structure of proteins in two linear sequences and then applies them to the comparison of two structures. The technique used for pairwise comparison of the sequences has been adopted from computational linguistics and its well-known techniques for analysing and quantifying textual sequences. To this end, an n-gram modelling technique is used to capture regularities between sequences, and then, the cross-entropy concept is employed to measure their similarities. Several experiments are conducted to evaluate the performance of the method and compare it with other commonly used programs. The assessments for information retrieval evaluation demonstrate that the technique has a high running speed, which is similar to other linear encoding methods, such as 3D-BLAST, SARST, and TS-AMIR, whereas its accuracy is comparable to CE and TM-align, which are high accuracy comparison tools. Accordingly, the results demonstrate that the algorithm has high efficiency compared with other state-of-the-art methods.
  2. Razmara J, Deris SB, Illias RB, Parvizpour S
    Bioinformation, 2013;9(7):345-8.
    PMID: 23750078 DOI: 10.6026/97320630009345
    A hidden Markov model (HMM) has been utilized to predict and generate artificial secretory signal peptide sequences. The strength of signal peptides of proteins from different subcellular locations via Lactococcus lactis bacteria correlated with their HMM bit scores in the model. The results show that the HMM bit score +12 are determined as the threshold for discriminating secreteory signal sequences from the others. The model is used to generate artificial signal peptides with different bit scores for secretory proteins. The signal peptide with the maximum bit score strongly directs proteins secretion.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links