Displaying all 5 publications

Abstract:
Sort:
  1. Maselli A, Dhawan A, Cesqui B, Russo M, Lacquaniti F, d'Avella A
    Front Hum Neurosci, 2017;11:505.
    PMID: 29163094 DOI: 10.3389/fnhum.2017.00505
    The ability to intercept or avoid a moving object, whether to catch a ball, snatch one's prey, or avoid the path of a predator, is a skill that has been acquired throughout evolution by many species in the animal kingdom. This requires processing early visual cues in order to program anticipatory motor responses tuned to the forthcoming event. Here, we explore the nature of the early kinematics cues that could inform an observer about the future direction of a ball projected with an unconstrained overarm throw. Our goal was to pinpoint the body segments that, throughout the temporal course of the throwing action, could provide key cues for accurately predicting the side of the outgoing ball. We recorded whole-body kinematics from twenty non-expert participants performing unconstrained overarm throws at four different targets placed on a vertical plane at 6 m distance. In order to characterize the spatiotemporal structure of the information embedded in the kinematics of the throwing action about the outgoing ball direction, we introduced a novel combination of dimensionality reduction and machine learning techniques. The recorded kinematics clearly shows that throwing styles differed considerably across individuals, with corresponding inter-individual differences in the spatio-temporal structure of the thrower predictability. We found that for most participants it is possible to predict the region where the ball hit the target plane, with an accuracy above 80%, as early as 400-500 ms before ball release. Interestingly, the body parts that provided the most informative cues about the action outcome varied with the throwing style and during the time course of the throwing action. Not surprisingly, at the very end of the action, the throwing arm is the most informative body segment. However, cues allowing for predictions to be made earlier than 200 ms before release are typically associated to other body parts, such as the lower limbs and the contralateral arm. These findings are discussed in the context of the sport-science literature on throwing and catching interactive tasks, as well as from the wider perspective of the role of sensorimotor coupling in interpersonal social interactions.
  2. James C, Dhawan A, Jones T, Pok C, Yeo V, Girard O
    J Sports Sci Med, 2021 03;20(1):101-109.
    PMID: 33707993 DOI: 10.52082/jssm.2021.101
    This study investigated the relationships between internal and external training load metrics across a 2-week 'in-season' microcycle in squash. 134 on-court and 32 off-court 'conditioning' sessions were completed by fifteen elite squash players with an average (±SD) of 11 ± 3 per player. During every session, external load was captured using a tri-axial accelerometer to calculate Playerload; i.e., the instantaneous rate of change of acceleration across 3-dimensional planes. Internal load was measured using heart rate (HR), global (sRPE) and differential RPE (dRPE-Legs, dRPE-Breathing). Additionally, HR was used to calculate Banister's, Edward's and TEAM TRIMPs. Across 166 training sessions, Playerload was moderately correlated with TRIMP-Banister (r = 0.43 [95% CI: 0.29-0.55], p < 0.001) and TRIMP-Edwards (r = 0.50 [0.37-0.61], p < 0.001). Association of Playerload with TRIMP-TEAM (r = 0.24 [0.09-0.38], p = 0.001) was small. There was a moderate correlation between sRPE and Playerload (r = 0.46 [0.33-0.57], p < 0.001). Association of sRPE was large with TRIMP-Banister (r = 0.68 [0.59-0.76], p = 0.001), very large with TRIMP-Edwards (r = 0.79 [0.72-0.84], p < 0.001) and moderate with TRIMP-TEAM (r = 0.44 [0.31-0.56], p < 0.001). Both dRPE-Legs (r = 0.95 [0.93-0.96], p < 0.001) and dRPE-Breathing (r = 0.92 [0.89-0.94], p < 0.001) demonstrated nearly perfect correlations with sRPE and with each other (r = 0.91 [0.88-0.93], p < 0.001). Collection of both internal and external training load data is recommended to fully appreciate the physical demands of squash training. During a training microcycle containing a variety of training sessions, interpreting internal or external metrics in isolation may underestimate or overestimate the training stress a player is experiencing.
  3. James CA, Gibson OR, Dhawan A, Stewart CM, Willmott AGB
    Front Sports Act Living, 2021;3:653364.
    PMID: 34127962 DOI: 10.3389/fspor.2021.653364
    The locomotor demands of international men's field hockey matches were investigated across positions (DEF, MID, FWD) and playing quarters. Volume (i.e., total values) and intensity (i.e., relative to playing time) data were collected using 10-Hz GPS/100-Hz accelerometer units from the #11 world-ranked (WR) team, during 71 matches, against 24 opponents [WR 12 ± 11 (range, 1-60)]. Mean ± SD team total distance (TD) was 4,861 ± 871 m, with 25% (1,193 ± 329 m) "high-speed running" (>14.5 km h-1) and 8% (402 ± 144 m) "sprinting" (>19.0 km h-1). Reduced TD (range, -3 to 4%) and average speed (range, -3.4 to 4.7%) occurred through subsequent quarters, vs. Q1 (p < 0.05). A "large" negative relationship (r = -0.64) was found between playing duration and average speed. Positional differences (p < 0.05) were identified for all volume metrics including; playing duration (DEF, 45:50 ± 8:00 min; MID, 37:37 ± 7:12 min; FWD, 33:32 ± 6:22 min), TD (DEF, 5,223 ± 851 m; MID, 4,945 ± 827 m; FWD, 4,453 ± 741 m), sprinting distance (DEF, 315 ± 121 m; MID, 437 ± 144 m; FWD, 445 ± 129 m), and acceleration efforts (>2 m s-2; DEF, 48 ± 12; MID, 51 ± 11; FWD, 50 ± 14). Intensity variables similarly revealed positional differences (p < 0.05) but with a different pattern between positions; average speed (DEF, 115 ± 10 m min-1; MID, 132 ± 10 m min-1; FWD, 134 ± 15 m min-1), sprinting (DEF, 7 ± 3 m min-1; MID, 12 ± 4 m min-1; FWD, 14 ± 4 m min-1), and accelerations (DEF, 1.1 ± 0.3 n min-1; MID, 1.4 ± 0.2 n min-1; FWD, 1.5 ± 0.3 n min-1). Physical outputs reduced across playing quarters, despite unlimited substitutions, demonstrating the importance of optimizing physical preparation prior to international competition. Volume and intensity data highlight specific positional requirements, with forwards displaying shorter playing durations but greater high-intensity activities than defenders.
  4. James CA, Willmott AGB, Dhawan A, Stewart C, Gibson OR
    Temperature (Austin), 2022;9(4):357-372.
    PMID: 36339092 DOI: 10.1080/23328940.2021.1997535
    This study investigated the effect of heat stress on locomotor activity within international field hockey at team, positional and playing-quarter levels. Analysis was conducted on 71 matches played by the Malaysia national men's team against 24 opponents. Fixtures were assigned to match conditions, based on air temperature [COOL (14 ± 3°C), WARM (24 ± 1°C), HOT (27 ± 1°C), or VHOT (32 ± 2°C), p 25°C) on pacing within international hockey. These are the first data demonstrating the effect of air temperature on locomotor activity within international men's hockey, notably that increased air temperature impairs high-intensity activities by 5-15%. Higher air temperatures compromise high-speed running distances between matches in hockey.
  5. Eslam M, Alkhouri N, Vajro P, Baumann U, Weiss R, Socha P, et al.
    Lancet Gastroenterol Hepatol, 2021 Oct;6(10):864-873.
    PMID: 34364544 DOI: 10.1016/S2468-1253(21)00183-7
    The term non-alcoholic fatty liver disease (NAFLD), and its definition, have limitations for both adults and children. The definition is most problematic for children, for whom alcohol consumption is usually not a concern. This problematic definition has prompted a consensus to rename and redefine adult NAFLD associated with metabolic dysregulation to metabolic (dysfunction)-associated fatty liver disease (MAFLD). Similarities, distinctions, and differences exist in the causes, natural history, and prognosis of fatty liver diseases in children compared with adults. In this Viewpoint we, an international panel, propose an overarching framework for paediatric fatty liver diseases and an age-appropriate MAFLD definition based on sex and age percentiles. The framework recognises the possibility of other coexisting systemic fatty liver diseases in children. The new MAFLD diagnostic criteria provide paediatricians with a conceptual scaffold for disease diagnosis, risk stratification, and improved clinical and multidisciplinary care, and they align with a definition that is valid across the lifespan.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links