Displaying all 4 publications

Abstract:
Sort:
  1. Kiew PL, Don MM
    Int J Food Sci Nutr, 2012 Aug;63(5):616-36.
    PMID: 22149726 DOI: 10.3109/09637486.2011.641944
    Marine sources have been attracting the attention of scientists and manufacturers worldwide hoping to find new alternatives for biological active substances. Promising new research indicates that sea cucumber, which is slug-like in appearance and has been a staple in Japan, China and other parts of East Asia since ancient times, is beginning to gain popularity as a dietary supplement in western countries. The roles of sea cucumber extracts in various physiological functions have spurred researchers to investigate the ability of sea cucumber to be an alternative in neutraceutical and medical applications. This article provides a brief introduction to sea cucumber and reviews its numerous bioactive compounds, such as triterpene glycosides, glycosaminoglycans, gangliosides, collagen, branched-chain fatty acid and lectins, which serve as potential sources of neutraceutical, pharmaceutical and cosmetic agents, thus providing a new platform in biochemical research.
  2. Teoh YP, Don MM, Ujang S
    Biotechnol Prog, 2012 Jan-Feb;28(1):232-41.
    PMID: 21990033 DOI: 10.1002/btpr.714
    Two statistical tools, Plackett-Burman design (PBD) and Box-Behnken design (BBD) were used to optimize the mycelia growth of Schizophyllum commune with different nutrient components. Results showed that 32.92 g/L of biomass were produced using a medium consisting of 18.74 g/L yeast extract, 38.65 g/L glucose, and 0.59 g/L MgSO(4).7H(2)O. The experimental data fitted well with the model predicted values within 0.09 to 0.77% error. The biomass was also tested for antifungal activity against wood degrading fungi of rubberwood. Results showed that the minimum inhibitory concentration (MIC) values for antifungal activity range from 0.16 to 5.00 μg/μL. The GC-MS analysis indicated that this fungus produced several compounds, such as glycerin, 2(3H)-furanone, 5-heptyldihydro-, 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-, and triacetin.
  3. Arifin AA, Don MM, Uzir MH
    Bioresour Technol, 2011 Oct;102(19):9318-20.
    PMID: 21835610 DOI: 10.1016/j.biortech.2011.07.053
    The present work aims to address the gas-phase biotransformation of geraniol into citronellol using growing cells of Saccharomyces cerevisiae (baker's yeast) in a continuous-closed-gas-loop bioreactor (CCGLB). This study revealed that the gaseous geraniol had a severe effect on the production of biomass during the growing cell biotransformation resulting in the decrease in the specific growth rate from 0.07 to 0.05 h⁻¹. The rate of reaction of the growing cell biotransformation was strongly affected by agitation and substrate flow rates. The highest citronellol concentration of 1.18 g/L and initial rate of reaction of 7.06 × 10⁻⁴ g/min g(cell) were obtained at 500 rpm and 8 L/min, respectively.
  4. Ahmad Z, Don MM, Mortan SH, Noor RA
    Bioprocess Biosyst Eng, 2010 Jun;33(5):599-606.
    PMID: 19915872 DOI: 10.1007/s00449-009-0381-2
    Recently, the increased demand of fructooligosaccharides (FOS) as a functional food has alarmed researchers to screen and identify new strains capable of producing fructosyltransferase (FTase). FTase is the enzyme that converts the substrate (sucrose) to glucose and fructose. The characterization of complex sugar such as table sugar, brown sugar, molasses, etc. will be carried out and the sugar that contained the highest sucrose concentration will be selected as a substrate. Eight species of macro-fungi will be screened for its ability to produce FTase and only one strain with the highest FTase activity will be selected for further studies. In this work, neural networks (NN) have been chosen to model the process based on their excellent 'resume' in coping with nonlinear process. Bootstrap re-sampling method has been utilized in re-sampling the data in this work. This method has successfully modeled the process as shown in the results.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links