Displaying all 14 publications

Abstract:
Sort:
  1. Ng HW, Laughton CA, Doughty SW
    J Chem Inf Model, 2014 Feb 24;54(2):573-81.
    PMID: 24460123 DOI: 10.1021/ci400463z
    Analysis of 300 ns (ns) molecular dynamics (MD) simulations of an adenosine A2a receptor (A2a AR) model, conducted in triplicate, in 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE) bilayers reveals significantly different protein dynamical behavior. Principal component analysis (PCA) shows that the dissimilarities stem from interhelical rather than intrahelical motions. The difference in the hydrophobic thicknesses of these simulated lipid bilayers is potentially a significant reason for the observed difference in results. The distinct lipid headgroups might also lead to different molecular interactions and hence different protein loop motions. Overall, the A2a AR shows higher mobility and flexibility in POPC as compared to POPE.
  2. Ng HW, Laughton CA, Doughty SW
    J Chem Inf Model, 2013 May 24;53(5):1168-78.
    PMID: 23514445 DOI: 10.1021/ci300610w
    Molecular dynamics (MD) simulations of membrane-embedded G-protein coupled receptors (GPCRs) have rapidly gained popularity among the molecular simulation community in recent years, a trend which has an obvious link to the tremendous pharmaceutical importance of this group of receptors and the increasing availability of crystal structures. In view of the widespread use of this technique, it is of fundamental importance to ensure the reliability and robustness of the methodologies so they yield valid results and enable sufficiently accurate predictions to be made. In this work, 200 ns simulations of the A2a adenosine receptor (A2a AR) have been produced and evaluated in the light of these requirements. The conformational dynamics of the target protein, as obtained from replicate simulations in both the presence and absence of an inverse agonist ligand (ZM241385), have been investigated and compared using principal component analysis (PCA). Results show that, on this time scale, convergence of the replicates is not readily evident and dependent on the types of the protein motions considered. Thus rates of inter- as opposed to intrahelical relaxation and sampling can be different. When studied individually, we find that helices III and IV have noticeably greater stability than helices I, II, V, VI, and VII in the apo form. The addition of the inverse agonist ligand greatly improves the stability of all helices.
  3. Yap BK, Buckle MJ, Doughty SW
    J Mol Model, 2012 Aug;18(8):3639-55.
    PMID: 22354276 DOI: 10.1007/s00894-012-1368-5
    5-HT(1A) serotonin and D1 dopamine receptor agonists have been postulated to be able to improve negative and cognitive impairment symptoms of schizophrenia, while partial agonists and antagonists of the D2 and 5-HT(2A) receptors have been reported to be effective in reducing positive symptoms. There is therefore a need for well-defined homology models for the design of more selective antipsychotic agents, since no three-dimensional (3D) crystal structures of these receptors are currently available. In this study, homology models were built based on the high-resolution crystal structure of the β(2)-adrenergic receptor (2RH1) and further refined via molecular dynamics simulations in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer system with the GROMOS96 53A6 united atom force field. Docking evaluations with representative agonists and antagonists using AutoDock 4.2 revealed binding modes in agreement with experimentally determined site-directed mutagenesis data and significant correlations between the computed and experimental pK (i) values. The models are also able to distinguish between antipsychotic agents with different selectivities and binding affinities for the four receptors, as well as to differentiate active compounds from decoys. Hence, these human 5-HT(1A), 5-HT(2A), D1 and D2 receptor homology models are capable of predicting the activities of novel ligands, and can be used as 3D templates for antipsychotic drug design and discovery.
  4. Swaminathan M, Chee CF, Chin SP, Buckle MJ, Rahman NA, Doughty SW, et al.
    Molecules, 2014 Jun 27;19(7):8933-48.
    PMID: 24979399 DOI: 10.3390/molecules19078933
    Muscarinic acetylcholine receptor-active compounds have potential for the treatment of Alzheimer's disease. In this study, a series of natural and synthetic flavones and flavonols was assayed in vitro for their ability to inhibit radioligand binding at human cloned M1 muscarinic receptors. Several compounds were found to possess competitive binding affinity (Ki=40-110 µM), comparable to that of acetylcholine (Ki=59 µM). Despite the fact that these compounds lack a positively-charged ammonium group under physiological conditions, molecular modelling studies suggested that they bind to the orthosteric site of the receptor, mainly through non-polar interactions.
  5. Munusamy V, Yap BK, Buckle MJ, Doughty SW, Chung LY
    Chem Biol Drug Des, 2013 Feb;81(2):250-6.
    PMID: 23039820 DOI: 10.1111/cbdd.12069
    Selective blockade of the serotonin 5-HT(2A) receptor is a useful therapeutic approach for a number of disorders, including schizophrenia, insomnia and ischaemic heart disease. A series of aporphines were docked into a homology model of the rat 5-HT(2A) receptor using AutoDock. Selected compounds with high in silico binding affinities were screened in vitro using radioligand-binding assays against rat serotonin (5-HT(1A) and 5-HT(2A)) and dopamine (D1 and D2) receptors. (R)-Roemerine and (±)-nuciferine were found to have high affinity for the 5-HT(2A) receptor (K(i) = 62 and 139 nM, respectively), with (R)-roemerine showing 20- to 400-fold selectivity for the 5-HT(2A) receptor over the 5-HT(1A), D1 and D2 receptors. Investigation into the ligand-receptor interactions suggested that the selectivity of (R)-roemerine is due to it having stronger H-bonding and dipole-dipole interactions with several of the key residues in the 5-HT(2A) receptor-binding site.
  6. Ng HW, Doughty SW, Luo H, Ye H, Ge W, Tong W, et al.
    Chem Res Toxicol, 2015 Dec 21;28(12):2343-51.
    PMID: 26524122 DOI: 10.1021/acs.chemrestox.5b00358
    Some chemicals in the environment possess the potential to interact with the endocrine system in the human body. Multiple receptors are involved in the endocrine system; estrogen receptor α (ERα) plays very important roles in endocrine activity and is the most studied receptor. Understanding and predicting estrogenic activity of chemicals facilitates the evaluation of their endocrine activity. Hence, we have developed a decision forest classification model to predict chemical binding to ERα using a large training data set of 3308 chemicals obtained from the U.S. Food and Drug Administration's Estrogenic Activity Database. We tested the model using cross validations and external data sets of 1641 chemicals obtained from the U.S. Environmental Protection Agency's ToxCast project. The model showed good performance in both internal (92% accuracy) and external validations (∼ 70-89% relative balanced accuracies), where the latter involved the validations of the model across different ER pathway-related assays in ToxCast. The important features that contribute to the prediction ability of the model were identified through informative descriptor analysis and were related to current knowledge of ER binding. Prediction confidence analysis revealed that the model had both high prediction confidence and accuracy for most predicted chemicals. The results demonstrated that the model constructed based on the large training data set is more accurate and robust for predicting ER binding of chemicals than the published models that have been developed using much smaller data sets. The model could be useful for the evaluation of ERα-mediated endocrine activity potential of environmental chemicals.
  7. Boukari Y, Scurr DJ, Qutachi O, Morris AP, Doughty SW, Rahman CV, et al.
    J Biomater Sci Polym Ed, 2015;26(12):796-811.
    PMID: 26065672 DOI: 10.1080/09205063.2015.1058696
    An injectable poly(DL-lactic-co-glycolic acid) (PLGA) system comprising both porous and protein-loaded microspheres capable of forming porous scaffolds at body temperature was developed for tissue regeneration purposes. Porous and non-porous (lysozyme loaded) PLGA microspheres were formulated to represent 'low molecular weight' 22-34 kDa, 'intermediate molecular weight' (IMW) 53 kDa and 'high molecular weight' 84-109 kDa PLGA microspheres. The respective average size of the microspheres was directly related to the polymer molecular weight. An initial burst release of lysozyme was observed from both microspheres and scaffolds on day 1. In the case of the lysozyme-loaded microspheres, this burst release was inversely related to the polymer molecular weight. Similarly, scaffolds loaded with 1 mg lysozyme/g of scaffold exhibited an inverse release relationship with polymer molecular weight. The burst release was highest amongst IMW scaffolds loaded with 2 and 3 mg/g. Sustained lysozyme release was observed after day 1 over 50 days (microspheres) and 30 days (scaffolds). The compressive strengths of the scaffolds were found to be inversely proportional to PLGA molecular weight at each lysozyme loading. Surface analysis indicated that some of the loaded lysozyme was distributed on the surfaces of the microspheres and thus responsible for the burst release observed. Overall the data demonstrates the potential of the scaffolds for use in tissue regeneration.
  8. Yau MQ, Emtage AL, Chan NJY, Doughty SW, Loo JSE
    J Comput Aided Mol Des, 2019 05;33(5):487-496.
    PMID: 30989574 DOI: 10.1007/s10822-019-00201-3
    The recent expansion of GPCR crystal structures provides the opportunity to assess the performance of structure-based drug design methods for the GPCR superfamily. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA)-based methods are commonly used for binding affinity prediction, as they provide an intermediate compromise of speed and accuracy between the empirical scoring functions used in docking and more robust free energy perturbation methods. In this study, we systematically assessed the performance of MM/PBSA in predicting experimental binding free energies using twenty Class A GPCR crystal structures and 934 known ligands. Correlations between predicted and experimental binding free energies varied significantly between individual targets, ranging from r = - 0.334 in the inactive-state CB1 cannabinoid receptor to r = 0.781 in the active-state CB1 cannabinoid receptor, while average correlation across all twenty targets was relatively poor (r = 0.183). MM/PBSA provided better predictions of binding free energies compared to docking scores in eight out of the twenty GPCR targets while performing worse for four targets. MM/PBSA binding affinity predictions calculated using a single, energy minimized structure provided comparable predictions to sampling from molecular dynamics simulations and may be more efficient when computational cost becomes restrictive. Additionally, we observed that restricting MM/PBSA calculations to ligands with a high degree of structural similarity to the crystal structure ligands improved performance in several cases. In conclusion, while MM/PBSA remains a valuable tool for GPCR structure-based drug design, its performance in predicting the binding free energies of GPCR ligands remains highly system-specific as demonstrated in a subset of twenty Class A GPCRs, and validation of MM/PBSA-based methods for each individual case is recommended before prospective use.
  9. Loo JSE, Emtage AL, Ng KW, Yong ASJ, Doughty SW
    J Mol Graph Model, 2017 Dec 29;80:38-47.
    PMID: 29306746 DOI: 10.1016/j.jmgm.2017.12.017
    GPCR crystal structures have become more readily accessible in recent years. However, homology models of GPCRs continue to play an important role as many GPCR structures remain unsolved. The new crystal structures now available provide not only additional templates for homology modelling but also the opportunity to assess the performance of homology models against their respective crystal structures and gain insight into the performance of such models. In this study we have constructed homology models from templates of various transmembrane sequence identities for eight GPCR targets to better understand the relationship between transmembrane sequence identity and model quality. Model quality was assessed relative to the crystal structure in terms of structural accuracy as well as performance in two typical structure-based drug design applications: ligand binding pose prediction and docking enrichment in virtual screening. Crystal structures significantly outperformed homology models in both assessments. Accurate ligand binding pose prediction was possible but difficult to achieve using homology models, even with the use of induced fit docking. In virtual screening using homology models still conferred significant enrichment compared to random selection, with a clear benefit also observed in using models optimized through induced fit docking. Our results indicate that while homology models that are reasonably accurate structurally can be constructed, without significant refinement homology models will be outperformed by crystal structures in ligand binding pose prediction and docking enrichment regardless of the template used, primarily due to the extremely high level of structural accuracy needed for such applications.
  10. Chin SP, Buckle MJ, Chalmers DK, Yuriev E, Doughty SW
    J Mol Graph Model, 2014 Apr;49:91-8.
    PMID: 24631873 DOI: 10.1016/j.jmgm.2014.02.002
    Structure-based virtual screening offers a good opportunity for the discovery of selective M1 muscarinic acetylcholine receptor (mAChR) agonists for the treatment of Alzheimer's disease. However, no 3-D structure of an M1 mAChR is yet available and the homology models that have been previously reported are only able to identify antagonists in virtual screening experiments. In this study, we generated a homology model of the human M1 mAChR, based on the crystal structure of an M3 mAChR as the template. This initial model was modified, using the agonist-bound crystal structure of a β2-adrenergic receptor as a guide, to give two possible activated structures. The T192 side chain was adjusted in both structures and one of the structures also had the whole of transmembrane (TM) 5 rotated and tilted toward the inner channel of the transmembrane region. The binding sites of all three structures were then refined by induced-fit docking (IFD) with acetylcholine. Virtual screening experiments showed that all three refined models could efficiently differentiate agonists from decoy molecules, with the TM5-modified models also giving good agonist/antagonist selectivity. The whole range of agonists and antagonists was observed to bind within the orthosteric site of the structure obtained by IFD refinement alone, implying that it has inactive state character. In contrast, the two TM5-modified structures were unable to accommodate the antagonists, supporting the proposition that they possess activated state character.
  11. Boukari Y, Qutachi O, Scurr DJ, Morris AP, Doughty SW, Billa N
    J Biomater Sci Polym Ed, 2017 Nov;28(16):1966-1983.
    PMID: 28777694 DOI: 10.1080/09205063.2017.1364100
    The development of patient-friendly alternatives to bone-graft procedures is the driving force for new frontiers in bone tissue engineering. Poly (dl-lactic-co-glycolic acid) (PLGA) and chitosan are well-studied and easy-to-process polymers from which scaffolds can be fabricated. In this study, a novel dual-application scaffold system was formulated from porous PLGA and protein-loaded PLGA/chitosan microspheres. Physicochemical and in vitro protein release attributes were established. The therapeutic relevance, cytocompatibility with primary human mesenchymal stem cells (hMSCs) and osteogenic properties were tested. There was a significant reduction in burst release from the composite PLGA/chitosan microspheres compared with PLGA alone. Scaffolds sintered from porous microspheres at 37 °C were significantly stronger than the PLGA control, with compressive strengths of 0.846 ± 0.272 MPa and 0.406 ± 0.265 MPa, respectively (p 
  12. Heng HL, Chee CF, Thy CK, Tee JT, Chin SP, Herr DR, et al.
    Chem Biol Drug Des, 2019 02;93(2):132-138.
    PMID: 30216681 DOI: 10.1111/cbdd.13390
    Compounds with activity at serotonin (5-hydroxytryptamine) 5-HT2 and α1 adrenergic receptors have potential for the treatment of central nervous system disorders, drug addiction or overdose. Isolaureline, dicentrine and glaucine enantiomers were synthesized, and their in vitro functional activities at human 5-HT2 and adrenergic α1 receptor subtypes were evaluated. The enantiomers of isolaureline and dicentrine acted as antagonists at 5-HT2 and α1 receptors with (R)-isolaureline showing the greatest potency (pKb  = 8.14 at the 5-HT2C receptor). Both (R)- and (S)-glaucine also antagonized α1 receptors, but they behaved very differently to the other compounds at 5-HT2 receptors: (S)-glaucine acted as a partial agonist at all three 5-HT2 receptor subtypes, whereas (R)-glaucine appeared to act as a positive allosteric modulator at the 5-HT2A receptor.
  13. Heng HL, Chee CF, Chin SP, Ouyang Y, Wang H, Buckle MJC, et al.
    Medchemcomm, 2018 03 01;9(3):593-594.
    PMID: 30288212 DOI: 10.1039/c8md90012d
    [This corrects the article DOI: 10.1039/C7MD00629B.].
  14. Heng HL, Chee CF, Chin SP, Ouyang Y, Wang H, Buckle MJC, et al.
    Medchemcomm, 2018 Mar 01;9(3):576-582.
    PMID: 30108948 DOI: 10.1039/c7md00629b
    In this study, the (S)-enantiomers of the aporphine alkaloids, nuciferine and roemerine, were prepared via a synthetic route involving catalytic asymmetric hydrogenation and both stereoisomers were evaluated in vitro for functional activity at human 5-HT2 and adrenergic α1 receptor subtypes using a transforming growth factor-α shedding assay. Both enantiomers of each of the compounds were found to act as antagonists at 5-HT2 and α1 receptors. (R)-roemerine was the most potent compound at 5-HT2A and 5-HT2C receptors (pKb = 7.8-7.9) with good selectivity compared to (S)-roemerine at these two receptors and compared to its activity at 5-HT2B, α1A, α1B and α1D receptors.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links