RESEARCH DESIGN & METHODS: Here, we present an interesting case of a 22-year-old woman treated with FMT primarily to treat recurrent Clostridioides difficile infection, which coincidentally alleviated her ADHD symptoms. We also present the pre- and post-FMT gut microbiota profiles conducted using shotgun metagenomic sequencing on the patient's fecal samples to thereby highlight potential microbial-associated mechanisms associated with the relief of ADHD symptoms.
RESULTS & CONCLUSIONS: Our case report provides preliminary evidence regarding the use of FMT in a patient with C. difficile and ADHD. We speculate that gut microbiome modulation, in particular the gain or loss of specific microbial species and pathways involving the metabolism of SCFAs, tryptophan and GABA, may merit further exploration as a potential therapeutic strategy for ADHD.
METHODS AND RESULTS: Extracts were obtained via sequential solvent extraction method using hexane, dichloromethane, ethyl acetate, methanol and water. Antimicrobial activity testing was done using broth microdilution assay against 17 strains of bacteria. The leaf hexane extract of E. coccinea and rhizome hexane extract of E. sessilanthera showed best antimicrobial activities, with minimum inhibitory concentration (MIC) values ranging from 0·016 to 1 mg ml-1 against Gram-positive bacteria. From these active extracts, two antimicrobials were isolated and identified as trans-2-dodecenal and 8(17),12-labdadiene-15,16-dial with MIC values ranging from 4 to 8 μg ml-1 against Bacillus cereus, Bacillus subtilis and Staphylococcus aureus.
CONCLUSION: Etlingera coccinea and E. sessilanthera demonstrated good antimicrobial activities against clinically relevant bacteria strains. The antimicrobial compounds isolated showed low MIC values, hence suggesting their potential use as antimicrobial agents.
SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first to identify the potent antimicrobials from these gingers. The antimicrobials isolated could potentially be developed further for use in treatment of bacterial infections. Also, this study warrants further research into other Etlingera species in search for more antimicrobial compounds.