Vibrio parahaemolyticus is a main foodborne disease in seafood and generally seafood is
easily deteriorates in quality of color and flavor. In this study, clove (Syzygium aromaticum)
extract shows potent antibacterial activity against growth of antibiotics resistant Vibrio
parahaemolyticus on seafood samples (cockles and shrimps). Vibrio parahaemolyticus was
artificial contaminates on the samples with 106 CFU/ml. The samples were treated with different
concentration of cloves extract with 10 mg/ml which are 0.5%, 5% and 10% concentration
from methanol food grade extraction in 0 hr, 5 min, 10 min, 15 min, 30 min, 60 min and
120 min. Tab water and deionized water were selected as a negative control. As a result, the
amount of 10 % cloves managed to mitigates the number of V. parahaemolyticus on seafood
samples in 5 minutes and 15 min on both samples. Therefore, our results signify the fact that
cloves can be apply as natural sanitizer which could meet consumer demands for safe and
traditionally consumed either raw without any undesirable effect when applied in the seafood
system industries.
Pathogenic Vibrio parahaemolyticus is one of the leading causes of bacterial gastroenteritis in many countries. Among the strains examined, 36 RAPD-types were found when amplified with primers OPA8 and OPA10. The analysis shows the majority of V. parahaemolyticus isolates originated from seafood were branched into four major clusters at 18.2%, 20.7% 34% and 3.4% similarity levels. This suggests that there is potential for a single strain to be distributed widely within a population and there also potential for multiple contaminating strains of different clonal lineages to be present within the same population. Optimum temperature (37ºC) was the highest and stable formation of biofilm. The total percentage of biofilm formation at 37ºC was 33.33% for each of weak, moderate and strong biofilm producers. Room temperature produces 61.1% of weak biofilm producer, while 13. 89% for moderate biofilm producers and produce 25% of strong biofilm. While a total of 91.67% weak biofilm producers at 4ºC and 8:33% for room temperature and no growth of strong biofilm. Upon analysis, strong biofilm was tracked from the largest group at 37°C and room temperature which produce 27.27% of strong biofilm producer respectively. Interestingly, they are derived from cockles.
Irrespective of its health effects, street foods are very popular with the consumers. The main
purpose of this research was to study the biosafety of Escherichia coli in popiah, a Malaysian
street food sold at a roadside food stall and a restaurant in Sri Serdang, Selangor, Malaysia,
using the combination of the most probable number (MPN)-Polymerase Chain Reaction
(PCR) assay-plating on Eosin Methylene Blue (EMB) agar methods. Using these biomolecular
methods, E. coli was detected in 12/15 (80%) and 11/15 (73%) of the collected samples from
the roadside food stall and the restaurant respectively. The incidence of stx virulence-associated
genes was detected in 1/15 (7%) among the E. coli isolated from samples taken from the
roadside food stall while the E. coli isolated from the restaurant was 3/15 (20%). The density
of E. coli ranged from 1100 MPN/g and the density of E. coli positive with stx genes
was
Presence of Norovirus in food can cause viral gasteroenteritis. Recently, lots of reports relating to Norovirus in food have been published. Special attention must be paid to the raw foods as they are not subjected to further heat treatment. In this study, pegaga, kesum, tauge and ulam raja (popular salad vegetables in Malaysia) were investigated for Norovirus. A total of 32 samples from each type of salad vegetables were purchased from local market and analyzed using One-step RT-PCR (Reverse Transcriptase-Polymerase Chain Reaction) for both genogroups namely Norovirus Genogroup I and Genogroup II. Results showed that tauge had the highest contamination with Norovirus Genogroup I (15.6%) comparing to pegaga (9.4%), kesum (12.5%)
and ulam raja (0%). Samples were free from Norovirus Genogroup II. The study showed that raw vegetables are high-risk foods and can be contaminated with Norovirus.
Bacteriophages are ubiquitous in our world, mainly in the oceans, soil, the water and food
we consume. They can be used efficiently in modern biotechnology, as well as alternatives
to antibiotics for many antibiotic resistant bacterial strains. Phages can be used as vehicles
for vaccines both DNA and protein, for the detection of pathogenic bacterial strain, as biocontrol
agents in agriculture and food industry. This review outlines the properties as well
as the influence of different external physical and chemical factors like temperature and
acidity on phage persistence. A better understanding of the complex problem of phage
sensitivity to external factors may be useful for other researchers working with phages.
Furthermore, the applications of bacteriophages were described in this paper as well.
In aquatic environments, Vibrio and cyanobacteria establish varying relationships influenced by environmental factors. To investigate their association, this study spanned 5 months at a local shrimp farm, covering the shrimp larvae stocking cycle until harvesting. A total of 32 samples were collected from pond A (n = 6), pond B (n = 6), effluent (n = 10), and influent (n = 10). Vibrio species and cyanobacteria density were observed, and canonical correspondence analysis (CCA) assessed their correlation. CCA revealed a minor correlation (p = 0.847, 0.255, 0.288, and 0.304) between Vibrio and cyanobacteria in pond A, pond B, effluent, and influent water, respectively. Notably, Vibrio showed a stronger correlation with pH (6.14-7.64), while cyanobacteria correlated with pH, salinity (17.4-24 ppt), and temperature (30.8-31.5 °C), with salinity as the most influential factor. This suggests that factors beyond cyanobacteria influence Vibrio survival. Future research could explore species-specific relationships, regional dynamics, and multidimensional landscapes to better understand Vibrio-cyanobacteria connections. Managing water parameters may prove more efficient in controlling vibriosis in shrimp farms than targeting cyanobacterial populations.