Microalgae harvesting using membrane technology is challenging because of its high fouling propensity. As an established fouling mitigation technique, efficacy of air bubbles can be improved by maximizing the impact of shear-rates in scouring foulant. In this study, it is achieved by tilting the membrane panel. We investigate the effect of tilting angle, switching period as well as aeration rate during microalgal broth filtration. Results show that higher tilting angles (up to 20°) improve permeability of up to 2.7 times of the vertical panel. In addition, operating a one-sided panel is better than a two-sided panel, in which the later involved switching mode. One-sided membrane panel only require a half of area, yet its performance is comparable with of a large-scale module. This tilted panel can lead to significant membrane cost reductions and eventually improves the competitiveness of membrane technology for microalgae harvesting application.
Membrane fouling is a major challenge in membrane bioreactors (MBRs) and its effective handling is the key to improve their competitiveness. Tilting panel system offers significant improvements for fouling control but is strictly limited to one-sided panel. In this study, we assess a two-way switch tilting panel system that enables two-sided membranes and project its implications on performance and energy footprint. Results show that tilting a panel improves permeance by up to 20% to reach a plateau flux thanks to better contacts between air bubbles and the membrane surface to scour-off the foulant. A plateau permeance could be achieved at aeration rate of as low as 0.90 l min-1, a condition untenable by vertical panel even at twice of the aeration rate. Switching at short periods (<5min) can maintain the hydraulic performance as in no-switch (static system), enables application of a two-sided switching panel. A comparison of vertical panel under 1.80 l min-1 aeration rate with a switching panel at a half of the rate, switched at 1 min period shows ≈10% higher permeance of the later. Since periodic switching consumes a very low energy (0.55% of the total of 0.276 kWh m-3), with reduction of aeration by 50%, the switching tilted panel offers 41% more energy efficient than a referenced full-scale MBR (0.390 kWh m-3). Overall results are very compelling and highly attractive for significant improvements of MBR technologies.