Vibrio parahaemolyticus and Vibrio vulnificus are the leading causes of seafood associated infections and mortality in the United States. The main syndromes caused by these pathogens are gastroenteritis, wound infections, and septicemia. This article reviewed the antibiotic resistance profile of V. parahaemolyticus and V. vulnificus in the United States and other countries including Italy, Brazil, Philippines, Malaysia, Thailand, China, India, Iran, South Africa and Australia. The awareness of antimicrobial resistance of these two pathogens is not as well documented as other foodborne bacterial pathogens. Vibrio spp. are usually susceptible to most antimicrobials of veterinary and human significance. However, many studies reported that V. vulnificus and V. parahaemolyticus showed multiple-antibiotic resistance due to misuse of antibiotics to control infections in aquaculture production. In addition, both environmental and clinical isolates showed similar antibiotic resistance profiles. Most frequently observed antibiotic resistance profiles involved ampicillin, penicillin and tetracycline regardless of the countries. The presence of multiple-antibiotic resistant bacteria in seafood and aquatic environments is a major concern in fish and shellfish farming and human health.
A total of 325 bacteria were isolated from both healthy and sheath blight infected leaf samples of rice plants, collected from different places of Malaysia, following dilution technique. Sheath blight pathogen was isolated from infected samples by tissue plating method. Out of 325, 14 isolates were found to be antagonist against the pathogen in pre evaluation test. All the 14 isolates were morphologically characterized. Antagonistic activity of these isolates was further confirmed by adopting the standard dual culture and extracellular metabolite tests. The best isolates were selected, based on the results. In dual culture test, the selected bacterial isolates KMB25, TMB33, PMB38, UMB20 and BMB42 showed 68.44%, 60.89%, 60.22%, 50.00% and 48.22% fungal growth inhibition, respectively and in extracellular metabolite test these bacterial isolates exhibited 93.33%, 84.26%, 69.82%, 67.96% and 39.26% of the same, respectively. Biochemical tests of selected isolates were performed following standard procedure. These bacterial isolates were tentatively identified as fluorescent pseudomonas by morphological and biochemical characterization. The identities were further confirmed by Biolog microstation system as P. fluorescens (UMB20), P. aeruginosa (KMB25, TMB33 and PMB38) and P. asplenii (BMB42) with similarity index ranging from 0.517 to 0.697. The effective bacterial isolates obtained from the present study can be used in the management of soil borne fungal pathogen Rhizoctonia solani, causing sheath blight of rice.