MATERIALS AND METHODS: In this experimental study, 50 adult male albino rats were classified into five groups. Group I was the negative control, group II was treated with gum acacia solution , group III was treated with NAC, group IV was treated with TiO2 nanoparticles, and group V was treated with 100 mg/kg of NAC and 1200 mg/kg TiO2 nanoparticles. Total testosterone, glutathione (GSH), and serum malondialdehyde (MDA) levels were estimated. The testes were subjected to histopathological, electron microscopic examinations, and immunohistochemical detection for tumor necrosis factor (TNF)-α. Cells from the left testis were examined to detect the degree of DNA impairment by using the comet assay.
RESULTS: TiO2 nanoparticles induced histopathological and ultrastructure changes in the testes as well as positive TNF-α immunoreaction in the testicular tissue. Moreover, there was an increase in serum MDA while a decrease in testosterone and GSH levels in TiO2 nanoparticles-treated group. TiO2 resulted in DNA damage. Administration of NAC to TiO2- treated rats led to improvement of the previous parameters with modest protective effects against DNA damage.
CONCLUSION: TiO2-induced damage to the testes was mediated by oxidative stress. Notably, administration of NAC protected against TiO2's damaging effects.