In the present study, we aimed to preincubate MCF-10A cells with pioglitazone and/or serum-rich growth media and to determine adhesive and non-adhesive interactions of the preincubated MCF-10A cells with BT-474 cells. For this purpose, the MCF-10A cells were preincubated with pioglitazone and/or serum-rich growth media, at appropriate concentrations, for 1 week. The MCF-10A cells preincubated with pioglitazone and/or serum-rich growth media were then co-cultured adhesively and non-adhesively with BT-474 cells for another week. Co-culture of BT-474 cells with the preincubated MCF-10A cells, both adhesively and non-adhesively, reduced the growth of the cancer cells. The inhibitory effect of the preincubated MCF-10A cells against the growth of BT-474 cells was likely produced by increasing levels of soluble factors secreted by the preincubated MCF-10A cells into the conditioned medium, as immunoassayed by ELISA. However, only an elevated level of a soluble factor distinguished the conditioned medium collected from the MCF-10A cells preincubated with pioglitazone and serum-rich growth medium than that with pioglitazone alone. This finding was further confirmed by the induction of the soluble factor transcript expression in the preincubated MCF-10A cells, as determined using real-time PCR, for the above phenomenon. Furthermore, modification of the MCF-10A cells through preincubation did not change the morphology of the cells, indicating that the preincubated cells may potentially be injected into mammary fat pads to reduce cancer growth in patients or to be used for others cell-mediated therapy.
The present study aimed to investigate the effects of bone marrow‑derived mesenchymal stem cells (BMSCs) that had been pretreated with pioglitazone and/or rosiglitazone on the growth and proliferation rate of MCF‑7 cells. The adhesive interaction between the BMSCs and the MCF‑7 cancer cells revealed that the pretreatment of BMSCs with a combination of two types of thiazolidinedione drug reduced the growth and proliferation rate of the MCF‑7 cells. The proliferation rate of the MCF‑7 cells could also be reduced by the non‑adhesive interaction of the cancer cells with BMSCs pretreated with pioglitazone and/or rosiglitazone. The growth and proliferation rate reduction effects on the MCF‑7 cells may be attributed to the reduction in the protein level of fibroblast growth factor 4 (FGF4) in the conditioned medium of the pretreated BMSCs. The evidence that the low protein level of FGF4 in the conditioned medium of the pretreated BMSCs perturbed the proliferation rate of the MCF‑7 cells by reducing the levels of Ki‑67 and proliferating cell nuclear antigen transcripts in the cancer cells was also demonstrated in the present study using a FGF4‑neutralizing antibody. All the above findings demonstrate that future studies on the correlation between FGF4 and pretreated BMSCs would be beneficial.