Displaying all 3 publications

Abstract:
Sort:
  1. Berhane Y, Weingartl HM, Lopez J, Neufeld J, Czub S, Embury-Hyatt C, et al.
    Transbound Emerg Dis, 2008 May;55(3-4):165-74.
    PMID: 18405339 DOI: 10.1111/j.1865-1682.2008.01021.x
    Nipah virus (NiV; Paramyxoviridae) caused fatal encephalitis in humans during an outbreak in Malaysia in 1998/1999 after transmission from infected pigs. Our previous study demonstrated that the respiratory, lymphatic and central nervous systems are targets for virus replication in experimentally infected pigs. To continue the studies on pathogenesis of NiV in swine, six piglets were inoculated oronasally with 2.5 x 10(5) PFU per animal. Four pigs developed mild clinical signs, one exudative epidermitis, and one neurologic signs due to suppurative meningoencephalitis, and was euthanized at 11 days post-inoculation (dpi). Neutralizing antibodies reached in surviving animals titers around 1280 at 16 dpi. Nasal and oro-pharyngeal shedding of the NiV was detected between 2 and 17 dpi. Virus appeared to be cleared from the tissues of the infected animals by 23 dpi, with low amount of RNA detected in submandibular and bronchial lymph nodes of three pigs, and olfactory bulb of one animal. Despite the presence of neutralizing antibodies, virus was isolated from serum at 24 dpi, and the viral RNA was still detected in serum at 29 dpi. Our results indicate slower clearance of NiV from some of the infected pigs. Bacteria were detected in the cerebrospinal fluid of five NiV inoculated animals, with isolation of Streptococcus suis and Enterococcus faecalis. Staphylococcus hyicus was isolated from the skin lesions of the animal with exudative epidermitis. Along with the observed lymphoid depletion in the lymph nodes of all NiV-infected animals, and the demonstrated ability of NiV to infect porcine peripheral blood mononuclear cells in vitro, this finding warrants further investigation into a possible NiV-induced immunosuppression of the swine host.
  2. Kasloff SB, Leung A, Pickering BS, Smith G, Moffat E, Collignon B, et al.
    Sci Rep, 2019 03 26;9(1):5230.
    PMID: 30914663 DOI: 10.1038/s41598-019-40476-y
    In 1998 an outbreak of fatal encephalitis among pig farm workers in Malaysia and Singapore led to the discovery of Nipah henipavirus (NiV), a novel paramyxovirus closely related to Hendra henipavirus with case fatality rates of nearly 40%. Following its initial emergence nearly annual outbreaks of NiV have occurred in Bangladesh with a different, NiV Bangladesh, genotype, where the role of pigs in its transmission remains unknown. The present study provides the first report on susceptibility of domestic pigs to NiV Bangladesh following experimental infection, characterizing acute and long-term phases of disease and pathogenesis. All pigs were successfully infected with NiV Bangladesh following oronasal inoculation, with viral shedding confirmed by a novel genotype-specific qRT-PCR in oral, nasal and rectal excretions and dissemination from the upper respiratory tract to the brain, lungs, and associated lymphatic tissues. Unlike previous NiV Malaysia findings in pigs, clinical signs were absent, viremia was undetectable throughout the study, and only low level neutralizing antibody titers were measured by 28/29 days post-NiV-B infection. Results obtained highlight the need for continued and enhanced NiV surveillance in pigs in endemic and at-risk regions, and raise questions regarding applicability of current serological assays to detect animals with previous NiV-B exposure.
  3. Griffin BD, Leung A, Chan M, Warner BM, Ranadheera C, Tierney K, et al.
    Sci Rep, 2019 08 01;9(1):11171.
    PMID: 31371748 DOI: 10.1038/s41598-019-47549-y
    Nipah virus (NiV) has emerged as a highly lethal zoonotic paramyxovirus that is capable of causing a febrile encephalitis and/or respiratory disease in humans for which no vaccines or licensed treatments are currently available. There are two genetically and geographically distinct lineages of NiV: NiV-Malaysia (NiV-M), the strain that caused the initial outbreak in Malaysia, and NiV-Bangladesh (NiV-B), the strain that has been implicated in subsequent outbreaks in India and Bangladesh. NiV-B appears to be both more lethal and have a greater propensity for person-to-person transmission than NiV-M. Here we describe the generation and characterization of stable RNA polymerase II-driven infectious cDNA clones of NiV-M and NiV-B. In vitro, reverse genetics-derived NiV-M and NiV-B were indistinguishable from a wildtype isolate of NiV-M, and both viruses were pathogenic in the Syrian hamster model of NiV infection. We also describe recombinant NiV-M and NiV-B with enhanced green fluorescent protein (EGFP) inserted between the G and L genes that enable rapid and sensitive detection of NiV infection in vitro. This panel of molecular clones will enable studies to investigate the virologic determinants of henipavirus pathogenesis, including the pathogenic differences between NiV-M and NiV-B, and the high-throughput screening of candidate therapeutics.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links