Displaying publications 1 - 20 of 154 in total

Abstract:
Sort:
  1. Aditi, Shariff M
    Epidemiol Infect, 2019 01;147:e95.
    PMID: 30869046 DOI: 10.1017/S0950268819000086
    Nipah virus (NiV) is an emerging bat-borne pathogen. It was first identified 20 years ago in Malaysia and has since caused outbreaks in other parts of South and Southeast Asia. It causes severe neurological and respiratory disease which is highly lethal. It is highly infectious and spreads in the community through infected animals or other infected people. Different strains of the virus show differing clinical and epidemiological features. Rapid diagnosis and implementation of infection control measures are essential to contain outbreaks. A number of serological and molecular diagnostic techniques have been developed for diagnosis and surveillance. Difficulties in diagnosis and management arise when a new area is affected. The high mortality associated with infection and the possibility of spread to new areas has underscored the need for effective management and control. However, no effective treatment or prophylaxis is readily available, though several approaches show promise. Given the common chains of transmission from bats to humans, a One Health approach is necessary for the prevention and control of NiV infection.
    Matched MeSH terms: Nipah Virus/physiology*
  2. Kitsutani P, Ohta M
    Nippon Rinsho, 2005 Dec;63(12):2143-53.
    PMID: 16363687
    Nipah virus (NiV) is a zoonotic paramyxovirus that was first recognized in 1999 as the causative agent of outbreaks of human encephalitis in Malaysia and Singapore, in association with severe respiratory and neurological disease in pigs. Since then, outbreaks of NiV encephalitis have also occurred in Bangladesh during 2001-2004, but without an association to infected swine or other animals. Although NiV infections typically result in acute encephalitis with high mortality, other clinical manifestations, including asymptomatic infection, relapsed encephalitis, and pulmonary disease, have been observed. The article will summarize the virology, epidemiology, clinical features, treatment, and control and prevention of NiV infections in humans.
    Matched MeSH terms: Nipah Virus*
  3. Kasloff SB, Leung A, Pickering BS, Smith G, Moffat E, Collignon B, et al.
    Sci Rep, 2019 03 26;9(1):5230.
    PMID: 30914663 DOI: 10.1038/s41598-019-40476-y
    In 1998 an outbreak of fatal encephalitis among pig farm workers in Malaysia and Singapore led to the discovery of Nipah henipavirus (NiV), a novel paramyxovirus closely related to Hendra henipavirus with case fatality rates of nearly 40%. Following its initial emergence nearly annual outbreaks of NiV have occurred in Bangladesh with a different, NiV Bangladesh, genotype, where the role of pigs in its transmission remains unknown. The present study provides the first report on susceptibility of domestic pigs to NiV Bangladesh following experimental infection, characterizing acute and long-term phases of disease and pathogenesis. All pigs were successfully infected with NiV Bangladesh following oronasal inoculation, with viral shedding confirmed by a novel genotype-specific qRT-PCR in oral, nasal and rectal excretions and dissemination from the upper respiratory tract to the brain, lungs, and associated lymphatic tissues. Unlike previous NiV Malaysia findings in pigs, clinical signs were absent, viremia was undetectable throughout the study, and only low level neutralizing antibody titers were measured by 28/29 days post-NiV-B infection. Results obtained highlight the need for continued and enhanced NiV surveillance in pigs in endemic and at-risk regions, and raise questions regarding applicability of current serological assays to detect animals with previous NiV-B exposure.
    Matched MeSH terms: Nipah Virus/pathogenicity*
  4. Fischer K, Pickering B, Diederich S
    Methods Mol Biol, 2023;2610:17-29.
    PMID: 36534278 DOI: 10.1007/978-1-0716-2895-9_2
    Nipah virus (NiV) is an emerging, zoonotic paramyxovirus that is among the most pathogenic of viruses in humans. During the first reported outbreak of NiV in Malaysia and Singapore in the late 1990s, pigs served as an intermediate host, which enabled the transmission to humans. Although subsequent outbreaks in Asia only reported direct bat-to-human and human-to-human transmission, pigs are still considered a potential source for viral dissemination in the epidemiology of the disease. Thus, serological assays such as Enzyme-linked immunosorbent assay (ELISA) or virus neutralization test (VNT) represent powerful tools to characterize the serum antibody responses in NiV-infected pigs as well as to perform seroepidemiological surveillance studies on the potential circulation of NiV or NiV-related viruses among pig populations worldwide. This chapter describes both methods in detail. Furthermore, we discuss some of the major pitfalls and indicate how to avoid them.
    Matched MeSH terms: Nipah Virus*
  5. Lu M, Yao Y, Liu H, Zhang X, Li X, Liu Y, et al.
    JCI Insight, 2023 Dec 08;8(23).
    PMID: 37917215 DOI: 10.1172/jci.insight.175461
    Nipah virus (NiV), a bat-borne paramyxovirus, results in neurological and respiratory diseases with high mortality in humans and animals. Developing vaccines is crucial for fighting these diseases. Previously, only a few studies focused on the fusion (F) protein alone as the immunogen. Numerous NiV strains have been identified, including 2 representative strains from Malaysia (NiV-M) and Bangladesh (NiV-B), which differ significantly from each other. In this study, an F protein sequence with the potential to prevent different NiV strain infections was designed by bioinformatics analysis after an in-depth study of NiV sequences in GenBank. Then, a chimpanzee adenoviral vector vaccine and a DNA vaccine were developed. High levels of immune responses were detected after AdC68-F, pVAX1-F, and a prime-boost strategy (pVAX1-F/AdC68-F) in mice. After high titers of humoral responses were induced, the hamsters were challenged by the lethal NiV-M and NiV-B strains separately. The vaccinated hamsters did not show any clinical signs and survived 21 days after infection with either strain of NiV, and no virus was detected in different tissues. These results indicate that the vaccines provided complete protection against representative strains of NiV infection and have the potential to be developed as a broad-spectrum vaccine for human use.
    Matched MeSH terms: Nipah Virus*
  6. Prasad AN, Agans KN, Sivasubramani SK, Geisbert JB, Borisevich V, Mire CE, et al.
    J Infect Dis, 2020 05 11;221(Suppl 4):S431-S435.
    PMID: 31665351 DOI: 10.1093/infdis/jiz469
    The high case-fatality rates and potential for use as a biological weapon make Nipah virus (NiV) a significant public health concern. Previous studies assessing the pathogenic potential of NiV delivered by the aerosol route in African green monkeys (AGMs) used the Malaysia strain (NiVM), which has caused lower instances of respiratory illness and person-to-person transmission during human outbreaks than the Bangladesh strain (NiVB). Accordingly, we developed a small particle aerosol model of NiVB infection in AGMs. Consistent with other mucosal AGM models of NiVB infection, we achieved uniform lethality and disease pathogenesis reflective of that observed in humans.
    Matched MeSH terms: Nipah Virus/classification*; Nipah Virus/physiology*
  7. Pasha F, Alatawi A, Amir M, Faridi U
    Pak J Biol Sci, 2020 Jan;23(8):1086-1095.
    PMID: 32700860 DOI: 10.3923/pjbs.2020.1086.1095
    BACKGROUND AND OBJECTIVE: The epidemiology of Nipah virus (NiV) was shortly seen in many Asian countries like Malaysia, Bangladesh and India most recently. Nipah virus also synonym as bat born virus is transmitted primarily by fruit bats. The 2 different strains transmitted are Hendra (highly pathogenic) and Cedar (non-pathogenic). The present study was attempt to develop recombinant protein based reagents for molecular diagnosis of Nipah.

    MATERIALS AND METHODS: The different primer sets were developed using bioinformatics software DNASTAR. The E. coli cells were used for recombinant protein expression.

    RESULTS: The NiV 'G' region primers were designed and amplified for 1 kb fragment and cloned. The NiV 'G' fragments were sub-cloned in pET-28(+) B and pGEX-5x-1. Recombinant protein thus obtained in soluble form in both the cases was essayed using western blot. The result showed the protein expression yield was more in pET-28(+) B with low stability and vice versa for pGEX-5x-1.

    CONCLUSION: The antibodies raised from the protein can be used as diagnostic reagent for detection of NiV. Thus, a new diagnostic technique can be industrialized.

    Matched MeSH terms: Nipah Virus/genetics; Nipah Virus/isolation & purification*
  8. Chakraborty S, Deb B, Barbhuiya PA, Uddin A
    Virus Res, 2019 04 02;263:129-138.
    PMID: 30664908 DOI: 10.1016/j.virusres.2019.01.011
    Codon usage bias (CUB) is the unequal usage of synonymous codons of an amino acid in which some codons are used more often than others and is widely used in understanding molecular biology, genetics, and functional regulation of gene expression. Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes fatal disease in both humans and animals. NiV was first identified during an outbreak of a disease in Malaysia in 1998 and then occurred periodically since 2001 in India, Bangladesh, and the Philippines. We used bioinformatics tools to analyze the codon usage patterns in a genome-wide manner among 11 genomes of NiV as no work was reported yet. The compositional properties revealed that the overall GC and AT contents were 41.96 and 58.04%, respectively i.e. Nipah virus genes were AT-rich. Correlation analysis between overall nucleotide composition and its 3rd codon position suggested that both mutation pressure and natural selection might influence the CUB across Nipah genomes. Neutrality plot revealed natural selection might have played a major role while mutation pressure had a minor role in shaping the codon usage bias in NiV genomes.
    Matched MeSH terms: Nipah Virus/genetics*
  9. Hegde ST, Lee KH, Styczynski A, Jones FK, Gomes I, Das P, et al.
    J Infect Dis, 2024 Mar 14;229(3):733-742.
    PMID: 37925626 DOI: 10.1093/infdis/jiad467
    Nipah virus Bangladesh (NiVB) is a bat-borne zoonosis transmitted between people through the respiratory route. The risk posed by related henipaviruses, including Hendra virus (HeV) and Nipah virus Malaysia (NiVM), is less clear. We conducted a broad search of the literature encompassing both human infections and animal models to synthesize evidence about potential for person-to-person spread. More than 600 human infections have been reported in the literature, but information on viral shedding was only available for 40 case-patients. There is substantial evidence demonstrating person-to-person transmission of NiVB, and some evidence for NiVM. Less direct evidence is available about the risk for person-to-person transmission of HeV, but animals infected with HeV shed more virus in the respiratory tract than those infected with NiVM, suggesting potential for transmission. As the group of known henipaviruses continues to grow, shared protocols for conducting and reporting from human investigations and animal experiments are urgently needed.
    Matched MeSH terms: Nipah Virus*
  10. Yu J, Lv X, Yang Z, Gao S, Li C, Cai Y, et al.
    Viruses, 2018 10 19;10(10).
    PMID: 30347642 DOI: 10.3390/v10100572
    Nipah disease is a highly fatal zoonosis which is caused by the Nipah virus. The Nipah virus is a BSL-4 virus with fruit bats being its natural host. It is mainly prevalent in Southeast Asia. The virus was first discovered in 1997 in Negeri Sembilan, Malaysia. Currently, it is mainly harmful to pigs and humans with a high mortality rate. This study describes the route of transmission of the Nipah virus in different countries and analyzes the possibility of the primary disease being in China and the method of its transmission to China. The risk factors are analyzed for different susceptible populations to Nipah disease. The aim is to improve people's risk awareness and prevention and control of the disease and reduce its risk of occurring and spreading in China.
    Matched MeSH terms: Nipah Virus/genetics; Nipah Virus/isolation & purification*; Nipah Virus/physiology
  11. Hayman DT, Wang LF, Barr J, Baker KS, Suu-Ire R, Broder CC, et al.
    PLoS One, 2011;6(9):e25256.
    PMID: 21966471 DOI: 10.1371/journal.pone.0025256
    Henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), have Pteropid bats as their known natural reservoirs. Antibodies against henipaviruses have been found in Eidolon helvum, an old world fruit bat species, and henipavirus-like nucleic acid has been detected in faecal samples from E. helvum in Ghana. The initial outbreak of NiV in Malaysia led to over 265 human encephalitis cases, including 105 deaths, with infected pigs acting as amplifier hosts for NiV during the outbreak. We detected non-neutralizing antibodies against viruses of the genus Henipavirus in approximately 5% of pig sera (N = 97) tested in Ghana, but not in a small sample of other domestic species sampled under a E. helvum roost. Although we did not detect neutralizing antibody, our results suggest prior exposure of the Ghana pig population to henipavirus(es). Because a wide diversity of henipavirus-like nucleic acid sequences have been found in Ghanaian E. helvum, we hypothesise that these pigs might have been infected by henipavirus(es) sufficiently divergent enough from HeVor NiV to produce cross-reactive, but not cross-neutralizing antibodies to HeV or NiV.
    Matched MeSH terms: Nipah Virus/immunology*
  12. Peterson AT
    Asia Pac J Public Health, 2015 Mar;27(2):NP824-32.
    PMID: 23343646 DOI: 10.1177/1010539512471965
    Nipah virus is a highly pathogenic but poorly known paramyxovirus from South and Southeast Asia. In spite of the risks that it poses to human health, the geography and ecology of its occurrence remain little understood-the virus is basically known from Bangladesh and peninsular Malaysia, and little in between. In this contribution, I use documented occurrences of the virus to develop ecological niche-based maps summarizing its likely broader occurrence-although rangewide maps could not be developed that had significant predictive abilities, reflecting minimal sample sizes available, maps within Bangladesh were quite successful in identifying areas in which the virus is predictably present and likely transmitted.
    Matched MeSH terms: Nipah Virus*
  13. Lu XF, Wang ZG, Wang BY
    Zhonghua Liu Xing Bing Xue Za Zhi, 2004 Jun;25(6):541-3.
    PMID: 15231143
    Matched MeSH terms: Nipah Virus/isolation & purification*
  14. Shahab M, Iqbal MW, Ahmad A, Alshabrmi FM, Wei DQ, Khan A, et al.
    Comput Biol Med, 2024 Mar;170:108056.
    PMID: 38301512 DOI: 10.1016/j.compbiomed.2024.108056
    The Nipah virus (NPV) is a highly lethal virus, known for its significant fatality rate. The virus initially originated in Malaysia in 1998 and later led to outbreaks in nearby countries such as Bangladesh, Singapore, and India. Currently, there are no specific vaccines available for this virus. The current work employed the reverse vaccinology method to conduct a comprehensive analysis of the entire proteome of the NPV virus. The aim was to identify and choose the most promising antigenic proteins that could serve as potential candidates for vaccine development. We have also designed B and T cell epitopes-based vaccine candidate using immunoinformatics approach. We have identified a total of 5 novel Cytotoxic T Lymphocytes (CTL), 5 Helper T Lymphocytes (HTL), and 6 linear B-cell potential antigenic epitopes which are novel and can be used for further vaccine development against Nipah virus. Then we performed the physicochemical properties, antigenic, immunogenic and allergenicity prediction of the designed vaccine candidate against NPV. Further, Computational analysis indicated that these epitopes possessed highly antigenic properties and were capable of interacting with immune receptors. The designed vaccine were then docked with the human immune receptors, namely TLR-2 and TLR-4 showed robust interaction with the immune receptor. Molecular dynamics simulations demonstrated robust binding and good dynamics. After numerous dosages at varied intervals, computational immune response modeling showed that the immunogenic construct might elicit a significant immune response. In conclusion, the immunogenic construct shows promise in providing protection against NPV, However, further experimental validation is required before moving to clinical trials.
    Matched MeSH terms: Nipah Virus*
  15. Alam AM
    Clin Med (Lond), 2022 Jul;22(4):348-352.
    PMID: 35760448 DOI: 10.7861/clinmed.2022-0166
    Nipah virus is an acute febrile illness that can cause fatal encephalitis. It is an emerging zoonotic paramyxovirus endemic to south-east Asia and the western Pacific, and can be transmitted by its primary reservoir of fruit bats, through intermediate animal vectors and by human-to-human spread. Outbreaks of Nipah virus encephalitis have occurred in Malaysia, Singapore, Philippines, India and Bangladesh, with the most recent outbreak occurring in Kerala, India in late 2021. Extremely high case fatality rates have been reported from these outbreaks, and to date no vaccines or therapeutic management options are available. Combining this with its propensity to present non-specifically, Nipah virus encephalitis presents a challenging diagnosis that should not be missed in patients returning from endemic regions. Raising awareness of the epidemiology, clinical presentation and risk factors of contracting Nipah virus is vital to recognise and manage potential outbreaks of this disease in the UK.
    Matched MeSH terms: Nipah Virus*
  16. Mire CE, Geisbert JB, Agans KN, Versteeg KM, Deer DJ, Satterfield BA, et al.
    Emerg Infect Dis, 2019 Jun;25(6):1144-1152.
    PMID: 31107231 DOI: 10.3201/eid2506.181620
    Nipah virus (NiV) is a zoonotic pathogen that causes high case-fatality rates (CFRs) in humans. Two NiV strains have caused outbreaks: the Malaysia strain (NiVM), discovered in 1998-1999 in Malaysia and Singapore (≈40% CFR); and the Bangladesh strain (NiVB), discovered in Bangladesh and India in 2001 (≈80% CFR). Recently, NiVB in African green monkeys resulted in a more severe and lethal disease than NiVM. No NiV vaccines or treatments are licensed for human use. We assessed replication-restricted single-injection recombinant vesicular stomatitis vaccine NiV vaccine vectors expressing the NiV glycoproteins against NiVB challenge in African green monkeys. All vaccinated animals survived to the study endpoint without signs of NiV disease; all showed development of NiV F Ig, NiV G IgG, or both, as well as neutralizing antibody titers. These data show protective efficacy against a stringent and relevant NiVB model of human infection.
    Matched MeSH terms: Nipah Virus*
  17. Epstein JH, Abdul Rahman S, Zambriski JA, Halpin K, Meehan G, Jamaluddin AA, et al.
    Emerg Infect Dis, 2006 Jul;12(7):1178-9.
    PMID: 16848051
    Matched MeSH terms: Nipah Virus/isolation & purification*
  18. Diederich S, Maisner A
    Ann N Y Acad Sci, 2007 Apr;1102:39-50.
    PMID: 17470910
    Nipah virus (NiV) is a highly pathogenic paramyxovirus, which emerged in 1998 from fruit bats in Malaysia and caused an outbreak of severe respiratory disease in pigs and fatal encephalitis in humans with high mortality rates. In contrast to most paramyxoviruses, NiV can infect a large variety of mammalian species. Due to this broad host range, its zoonotic potential, its high pathogenicity for humans, and the lack of effective vaccines or therapeutics, NiV was classified as a biosafety level 4 pathogen. This article provides an overview of the molecular characteristics of NiV focusing on the structure, functions, and unique biological properties of the two NiV surface glycoproteins, the receptor-binding G protein, and the fusion protein F. Since viral glycoproteins are major determinants for cell tropism and virus spread, a detailed knowledge of these proteins can help to understand the molecular basis of viral pathogenicity.
    Matched MeSH terms: Nipah Virus/genetics; Nipah Virus/physiology; Nipah Virus/chemistry*
  19. Chang LY, Ali AR, Hassan SS, AbuBakar S
    Virol J, 2006;3:47.
    PMID: 16784519
    Nipah virus is a zoonotic virus isolated from an outbreak in Malaysia in 1998. The virus causes infections in humans, pigs, and several other domestic animals. It has also been isolated from fruit bats. The pathogenesis of Nipah virus infection is still not well described. In the present study, Nipah virus replication kinetics were estimated from infection of African green monkey kidney cells (Vero) using the one-step SYBR Green I-based quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) assay.
    Matched MeSH terms: Nipah Virus/genetics; Nipah Virus/pathogenicity; Nipah Virus/physiology*
  20. Rodriguez JJ, Horvath CM
    Viral Immunol, 2004;17(2):210-9.
    PMID: 15279700
    Interferon (IFN) can activate Signal Transducer and Activator of Transcription (STAT) proteins to establish a cellular antiviral response and inhibit virus replication. Many viruses have evolved strategies to inhibit this antiviral mechanism, but paramyxoviruses are unique in their abilities to directly target the IFN-responsive STAT proteins. Hendra virus and Nipah virus (Henipaviruses) are recently emerged paramyxoviruses that are the causative agents of fatal disease outbreaks in Australia and peninsular Malaysia. Similar to other paramyxoviruses, Henipaviruses inhibit IFN signal transduction through a virus-encoded protein called V. Recent studies have shown that Henipavirus V proteins target STAT proteins by inducing the formation of cytoplasmically localized high molecular weight STAT-containing complexes. This sequestration of STAT1 and STAT2 prevents STAT activation and blocks antiviral IFN signaling. As the V proteins are important factors for host evasion, they represent logical targets for therapeutics directed against Henipavirus epidemics.
    Matched MeSH terms: Nipah Virus/drug effects; Nipah Virus/metabolism; Nipah Virus/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links