Displaying all 2 publications

Abstract:
Sort:
  1. Saw KG, Esa SR
    Sci Rep, 2021 Apr 07;11(1):7644.
    PMID: 33828210 DOI: 10.1038/s41598-021-87386-6
    Time-of-flight secondary ion mass spectrometry fragment analysis remains a challenging task. The fragment appearance regularity (FAR) rule is particularly useful for two-element compounds such as ZnO. Ion fragments appearing in the form of ZnxOy obey the rule [Formula: see text] in the positive secondary ion spectrum and [Formula: see text] in the negative spectrum where the valence of Zn is + 2 and that of O is - 2. Fragment analysis in gallium-doped ZnO (GZO) films can give insights into the bonding of the elements in this important semiconductor. Fragment analysis of 1 and 7 wt% GZO films shows that only the negative ion fragments obey the FAR rule where ZnO‒, 66ZnO‒, 68ZnO‒ and ZnO2‒ ion fragments appear. In the positive polarity, subdued peaks from out-of-the-rule ZnO+, 66ZnO+ and 68ZnO+ ion fragments are observed. The Ga ion peaks are present in both the positive and negative spectra. The secondary ion spectra of undoped ZnO also shows consistency with the FAR rule. This implies that Ga doping even in amounts that exceed the ZnO lattice limit of solubility does not affect the compliance with the FAR rule.
  2. Mohamed A, Ardyani T, Abu Bakar S, Sagisaka M, Umetsu Y, Hamon JJ, et al.
    J Colloid Interface Sci, 2018 Apr 15;516:34-47.
    PMID: 29360058 DOI: 10.1016/j.jcis.2018.01.041
    HYPOTHESIS: Graphene nanoplatelets (GNPs) can be dispersed in natural rubber matrices using surfactants. The stability and properties of these composites can be optimized by the choice of surfactants employed as stabilizers. Surfactants can be designed and synthesized to have enhanced compatibility with GNPs as compared to commercially available common surfactants. Including aromatic groups in the hydrophobic chain termini improves graphene compatibility of surfactants, which is expected to increase with the number of aromatic moieties per surfactant molecule. Hence, it is of interest to study the relationship between molecular structure, dispersion stability and electrical conductivity enhancement for single-, double-, and triple-chain anionic graphene-compatible surfactants.

    EXPERIMENTS: Graphene-philic surfactants, bearing two and three chains phenylated at their chain termini, were synthesized and characterized by proton nuclear magnetic resonance (1H NMR) spectroscopy. These were used to formulate and stabilize dispersion of GNPs in natural rubber latex matrices, and the properties of systems comprising the new phenyl-surfactants were compared with commercially available surfactants, sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS). Raman spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HRTEM) were used to study structural properties of the materials. Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between surfactant architecture and nanocomposite properties. Small-angle neutron scattering (SANS) was used to study self-assembly structure of surfactants.

    FINDINGS: Of these different surfactants, the tri-chain aromatic surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly graphene-compatible (nanocomposite electrical conductivity = 2.22 × 10-5 S cm-1), demonstrating enhanced electrical conductivity over nine orders of magnitude higher than neat natural rubber-latex matrix (1.51 × 10-14 S cm-1). Varying the number of aromatic moieties in the surfactants appears to cause significant differences to the final properties of the nanocomposites.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links