A simple and green method was presented to embed TiO2 on regenerated cellulose membranes via cellulose dissolution-regeneration process. The physical, chemical and mechanical properties of the composite membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier- Transform Infrared (FTIR), ultraviolet (UV) - visible spectroscopy and tensile test. The results indicated that cotton linter has been converted from cellulose I to cellulose II after the regeneration process, while the TiO2 nanoparticles embedded inside the membrane maintaining its original crystal structures. The TiO2 composite membranes possessed high ability of water absorption with total pore volume ranged from 0.45±0.01 to 0.53±0.02 cm3/g. The elongation at break of the prepared membranes increased 29% averagely from dry state to wet state. The tensile strength of the membranes remained at a minimum value of 0.50±0.03 MPa in wet state thus enabled the films to withstand in wet for long period of time under weak UV irradiation. The regenerated cellulose membranes with TiO2 performed well in photocatalytic activity while exhibiting distinct absorption abilities. This study provides a potential application in energy-saving decomposition system in which the dye compound can be easily removed via two simultaneous pathways: Absorption and photocatalytic decomposition.
Three-Dimentional (3-D) printing is currently a popular printing technique that is used in many sectors. Potentially, this technology is expected to replace conventional manufacturing in the coming years. It is accelerating in gaining attention due to its design freedom where objects can be produced without imagination boundaries. The review presents a perspective on the application of 3-D printing application based on various fields. However, the ordinary 3-D printed products with a single type of raw often lack robustness leading to broken parts. Improving the mechanical property of a 3-D printed part is crucial for its applications in many fields. One of the promising solutions is to incorporate nanoparticles or fillers into the raw material. The review aims to provide information about the types of additive manufacturing. There are few types of raw materials can be used as foundation template in the printing, enhanced properties of the printed polymer nanocomposites with different types of nanoparticles as additives in the printing. The article reviews the advantages and disadvantages of different materials that are used as raw materials or base materials in 3-D printing. This can be a guideline for the readers to compare and analyse the raw materials prior to a decision on the type of material to be selected. The review prepares an overview for the researchers to choose the types of nanoparticles to be added in the printing of the products depending on the targeted application. With the added functionality of the 3-D polymer nanocomposites, it will help in widespread of the application of 3-D printing technology in various sector.
Plants have been used for multiple purposes over thousands of years in various applications such as traditional Chinese medicine and Ayurveda. More recently, the special properties of phytochemicals within plant extracts have spurred researchers to pursue interdisciplinary studies uniting nanotechnology and biotechnology. Plant-mediated green synthesis of nanomaterials utilises the phytochemicals in plant extracts to produce nanomaterials. Previous publications have demonstrated that diverse types of nanomaterials can be produced from extracts of numerous plant components. This review aims to cover in detail the use of plant extracts to produce copper (Cu)-based nanomaterials, along with their robust applications. The working principles of plant-mediated Cu-based nanomaterials in biomedical and environmental applications are also addressed. In addition, it discusses potential biotechnological solutions and new applications and research directions concerning plant-mediated Cu-based nanomaterials that are yet to be discovered so as to realise the full potential of the plant-mediated green synthesis of nanomaterials in industrial-scale production and wider applications. This review provides readers with comprehensive information, guidance, and future research directions concerning: (1) plant extraction, (2) plant-mediated synthesis of Cu-based nanomaterials, (3) the applications of plant-mediated Cu-based nanomaterials in biomedical and environmental remediation, and (4) future research directions in this area.