Displaying all 5 publications

Abstract:
Sort:
  1. Fallahiarezoudar E, Ahmadipourroudposht M, Idris A, Mohd Yusof N
    Mater Sci Eng C Mater Biol Appl, 2015 Mar;48:556-65.
    PMID: 25579957 DOI: 10.1016/j.msec.2014.12.016
    The four heart valves represented in the mammalian hearts are responsible for maintaining unidirectional, non-hinder blood flow. The heart valve leaflets synchronically open and close approximately 4 million times a year and more than 3 billion times during the life. Valvular heart dysfunction is a significant cause of morbidity and mortality around the world. When one of the valves malfunctions, the medical choice is may be to replace the original valves with an artificial one. Currently, the mechanical and biological artificial valves are clinically used with some drawbacks. Tissue engineering heart valve concept represents a new technique to enhance the current model. In tissue engineering method, a three-dimensional scaffold is fabricated as the template for neo-tissue development. Appropriate cells are seeded to the matrix in vitro. Various approaches have been investigated either in scaffold biomaterials and fabrication techniques or cell source and cultivation methods. The available results of ongoing experiments indicate a promising future in this area (particularly in combination of bone marrow stem cells with synthetic scaffold), which can eliminate the need for lifelong anti-coagulation medication, durability and reoperation problems.
  2. Ahmadipourroudposht M, Fallahiarezoudar E, Yusof NM, Idris A
    Mater Sci Eng C Mater Biol Appl, 2015 May;50:234-41.
    PMID: 25746266 DOI: 10.1016/j.msec.2015.02.008
    Magnetic nanofibers are composed of good dispersion of magnetic nanoparticles along an organic material. Magnetic nanofibers are potentially useful for composite reinforcement, bio-medical and tissue engineering. Nanofibers with the thinner diameter have to result in higher rigidity and tensile strength due to better alignments of lamellae along the fiber axis. In this study, the performance of electrospinning process was explained using response surface methodology (RSM) during fabrication of magnetic nanofibers using polyvinyl alcohol (PVA) as a shelter for (γ-Fe2O3) nanoparticles where the parameters investigated were flow rate, applied voltage, distance between needle and collector and collector rotating speed. The response variable was diameter distribution. The two parameters flow rate and applied voltage in primary evaluation were distinguished as significant factors. Central composite design was applied to optimize the variable of diameter distribution. Quadratic estimated model developed for diameter distribution indicated the optimum conditions to be flow rate of 0.25 ml/h at voltage of 45 kV while the distance and rotating speed are at 8 cm and 1500 rps respectively. The obtained model was verified successfully by the confirmation experiments.
  3. Fallahiarezoudar E, Ahmadipourroudposht M, Idris A, Yusof NM
    Mater Sci Eng C Mater Biol Appl, 2017 Jul 01;76:616-627.
    PMID: 28482571 DOI: 10.1016/j.msec.2017.03.120
    Tissue engineering (TE) is an advanced principle to develop a neotissue that can resemble the original tissue characteristics with the capacity to grow, to repair and to remodel in vivo. This research proposed the optimization and development of nanofiber based scaffold using the new mixture of maghemite (γ-Fe2O3) filled poly-l-lactic acid (PLLA)/thermoplastic polyurethane (TPU) for tissue engineering heart valve (TEHV). The chemical, structural, biological and mechanical properties of nanofiber based scaffold were characterized in terms of morphology, porosity, biocompatibility and mechanical behaviour. Two-level Taguchi experimental design (L8) was performed to optimize the electrospun mats in terms of elastic modulus using uniaxial tensile test where the studied parameters were flow rate, voltage, percentage of maghemite nanoparticles in the content, solution concentration and collector rotating speed. Each run was extended with an outer array to consider the noise factors. The signal-to-noise ratio analysis indicated the contribution percent as follow; Solution concentration>voltage>maghemite %>rotating speed>flow rate. The optimum elastic modulus founded to be 28.13±0.37MPa in such a way that the tensile strain was 31.72% which provided desirability for TEHV. An empirical model was extracted and verified using confirmation test. Furthermore, an ultrafine quality of electrospun nanofibers with 80.32% porosity was fabricated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and cell attachment using human aortic smooth muscle cells exhibited desirable migration and proliferation over the electrospun mats. The interaction between blood content and the electrospun mats indicated a mutual adaption in terms of clotting time and hemolysis percent. Overall, the fabricated scaffold has the potential to provide the required properties of aortic heart valve.
  4. Fallahiarezoudar E, Ahmadipourroudposht M, Yakideh K, Ngadiman NA
    Environ Sci Pollut Res Int, 2022 May;29(25):38285-38302.
    PMID: 35075563 DOI: 10.1007/s11356-022-18742-w
    Most human activities that use water produced sewage. As urbanization grows, the overall demand for water grows. Correspondingly, the amount of produced sewage and pollution-induced water shortage is continuously increasing worldwide. Ensuring there are sufficient and safe water supplies for everyone is becoming increasingly challenging. Sewage treatment is an essential prerequisite for water reclamation and reuse. Sewage treatment plants' (STPs) performance in terms of economic and environmental perspective is known as a critical indicator for this purpose. Here, the window-based data envelopment analysis model was applied to dynamically assess the relative annual efficiency of STPs under different window widths. A total of five STPs across Malaysia were analyzed during 2015-2019. The labor cost, utility cost, operation cost, chemical consumption cost, and removal rate of pollution, as well as greenhouse gases' (GHGs) emissions, all were integrated to interpret the eco-environmental efficiency. Moreover, the ordinary least square as a supplementary method was used to regress the efficiency drivers. The results indicated the particular window width significantly affects the average of overall efficiencies; however, it shows no influence on the ranking of STP efficiency. The labor cost was determined as the most influential parameter, involving almost 40% of the total cost incurred. Hence, higher efficiency was observed with the larger-scale plants. Meanwhile, the statistical regression analysis illustrates the significance of plant scale, inflow cBOD concentrations, and inflow total phosphorus concentrations at [Formula: see text] on the performance. Lastly, some applicable techniques were suggested in terms of GHG emission mitigation.
  5. Fallahiarezoudar E, Ahmadipourroudposht M, Yusof NM, Idris A, Ngadiman NHA
    Polymers (Basel), 2017 Nov 06;9(11).
    PMID: 30965883 DOI: 10.3390/polym9110584
    Valvular dysfunction as the prominent reason of heart failure may causes morbidity and mortality around the world. The inability of human body to regenerate the defected heart valves necessitates the development of the artificial prosthesis to be replaced. Besides, the lack of capacity to grow, repair or remodel of an artificial valves and biological difficulty such as infection or inflammation make the development of tissue engineering heart valve (TEHV) concept. This research presented the use of compound of poly-l-lactic acid (PLLA), thermoplastic polyurethane (TPU) and maghemite nanoparticle (γ-Fe₂O₃) as the potential biomaterials to develop three-dimensional (3D) aortic heart valve scaffold. Electrospinning was used for fabricating the 3D scaffold. The steepest ascent followed by the response surface methodology was used to optimize the electrospinning parameters involved in terms of elastic modulus. The structural and porosity properties of fabricated scaffold were characterized using FE-SEM and liquid displacement technique, respectively. The 3D scaffold was then seeded with aortic smooth muscle cells (AOSMCs) and biological behavior in terms of cell attachment and proliferation during 34 days of incubation was characterized using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and confocal laser microscopy. Furthermore, the mechanical properties in terms of elastic modulus and stiffness were investigated after cell seeding through macro-indentation test. The analysis indicated the formation of ultrafine quality of nanofibers with diameter distribution of 178 ± 45 nm and 90.72% porosity. In terms of cell proliferation, the results exhibited desirable proliferation (109.32 ± 3.22% compared to the control) of cells over the 3D scaffold in 34 days of incubation. The elastic modulus and stiffness index after cell seeding were founded to be 22.78 ± 2.12 MPa and 1490.9 ± 12 Nmm², respectively. Overall, the fabricated 3D scaffold exhibits desirable structural, biological and mechanical properties and has the potential to be used in vivo.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links