Displaying all 4 publications

Abstract:
Sort:
  1. Huseien GF, Sam ARM, Faridmehr I, Baghban MH
    Materials (Basel), 2021 Mar 06;14(5).
    PMID: 33800835 DOI: 10.3390/ma14051255
    This research investigated the application of epoxy resin polymer as a self-healing strategy for improving the mechanical and durability properties of cement-based mortar. The epoxy resin was added to the concrete mix at various levels (5, 10, 15, and 20% of cement weight), and the effectiveness of healing was evaluated by microstructural analysis, compressive strength, and non-destructive (ultrasonic pulse velocity) tests. Dry and wet-dry conditions were considered for curing, and for generating artificial cracks, specimens at different curing ages (1 and 6 months) were subjected to compressive testing (50 and 80% of specimen's ultimate compressive strength). The results indicated that the mechanical properties in the specimen prepared by 10% epoxy resin and cured under wet-dry conditions was higher compared to other specimens. The degree of damage and healing efficiency index of this particular mix design were significantly affected by the healing duration and cracking age. An optimized artificial neural network (ANN) combined with a firefly algorithm was developed to estimate these indexes over the self-healing process. Overall, it was concluded that the epoxy resin polymer has high potential as a mechanical properties self-healing agent in cement-based mortar.
  2. Azimi M, Bin Adnan A, Sam AR, Tahir MM, Faridmehr I, Hodjati R
    ScientificWorldJournal, 2014;2014:802605.
    PMID: 25309957 DOI: 10.1155/2014/802605
    The seismic performance of RC columns could be significantly improved by continuous spiral reinforcement as a result of its adequate ductility and energy dissipation capacity. Due to post-earthquake brittle failure observations in beam-column connections, the seismic behaviour of such connections could greatly be improved by simultaneous application of this method in both beams and columns. In this study, a new proposed detail for beam to column connection introduced as "twisted opposing rectangular spiral" was experimentally and numerically investigated and its seismic performance was compared against normal rectangular spiral and conventional shear reinforcement systems. In this study, three full scale beam to column connections were first designed in conformance with Eurocode (EC2-04) for low ductility class connections and then tested by quasistatic cyclic loading recommended by ACI Building Code (ACI 318-02). Next, the experimental results were validated by numerical methods. Finally, the results revealed that the new proposed connection could improve the ultimate lateral resistance, ductility, and energy dissipation capacity.
  3. M Mhaya A, Baghban MH, Faridmehr I, Huseien GF, Abidin ARZ, Ismail M
    Materials (Basel), 2021 Apr 11;14(8).
    PMID: 33920340 DOI: 10.3390/ma14081900
    Recycling of the waste rubber tire crumbs (WRTCs) for the concretes production generated renewed interest worldwide. The insertion of such waste as a substitute for the natural aggregates in the concretes is an emergent trend for sustainable development towards building materials. Meanwhile, the enhanced resistance of the concrete structures against aggressive environments is important for durability, cost-saving, and sustainability. In this view, this research evaluated the performance of several modified rubberized concretes by exposing them to aggressive environments i.e., acid, and sulphate attacks, elevated temperatures. These concrete (12 batches) were made by replacing the cement and natural aggregate with an appropriate amount of the granulated blast furnace slag (GBFS) and WRTCs, respectively. The proposed mix designs' performance was evaluated by several measures, including the residual compressive strength (CS), weight loss, ultrasonic pulse velocity (UPV), microstructures, etc. Besides, by using the available experimental test database, an optimized artificial neural network (ANN) combined with the particle swarm optimization (PSO) was developed to estimate the residual CS of modified rubberized concrete after immersion one year in MgSO4 and H2SO4 solutions. The results indicated that modified rubberized concrete prepared by 5 to 20% WRTCs as a substitute to natural aggregate, provided lower CS and weight lose expose to sulphate and acid attacks compared to control specimen prepared by ordinary Portland cement (OPC). Although the CS were slightly declined at the elevated temperature, these proposed mix designs have a high potential for a wide variety of concrete industrial applications, especially in acid and sulphate risk.
  4. Asaad MA, Huseien GF, Baghban MH, Raja PB, Fediuk R, Faridmehr I, et al.
    Materials (Basel), 2021 Dec 19;14(24).
    PMID: 34947461 DOI: 10.3390/ma14247867
    The inhibiting effect of Gum Arabic-nanoparticles (GA-NPs) to control the corrosion of reinforced concrete that exposed to carbon dioxide environment for 180 days has been investigated. The steel reinforcement of concrete in presence and absence of GA-NPs were examined using various standard techniques. The physical/surface changes of steel reinforcement was screened using weight loss measurement, electrochemical impedance spectroscopy (EIS), atomic force microscopy and scanning electron microscopy (SEM). In addition, the carbonation resistance of concrete as well screened using visual inspection (carbonation depth), concrete alkalinity (pH), thermogravimetric analysis (TGA), SEM, energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The GA-NPs inhibitor size was also confirmed by transmission electron microscopy (TEM). The results obtained revealed that incorporation of 3% GA-NPs inhibitor into concrete inhibited the corrosion process via adsorption of inhibitor molecules over the steel reinforcement surface resulting of a protective layer formation. Thus, the inhibition efficiency was found to increase up-to 94.5% with decreasing corrosion rate up-to 0.57 × 10-3 mm/year. Besides, the results also make evident the presence of GA-NPs inhibitor, ascribed to the consumption of calcium hydroxide, and reduced the Ca/Si to 3.72% and 0.69% respectively. Hence, C-S-H gel was developed and pH was increased by 9.27% and 12.5, respectively. It can be concluded that green GA-NPs have significant corrosion inhibition potential and improve the carbonation resistance of the concrete matrix to acquire durable reinforced concrete structures.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links