Chicken is known to be the most common meat type involved in food mislabeling and adulteration. Establishing a method to authenticate chicken content precisely and identifying chicken breeds as declared in processed food is crucial for protecting consumers' rights. Categorizing the authentication method into their respective omics disciplines, such as genomics, transcriptomics, proteomics, lipidomics, metabolomics, and glycomics, and the implementation of bioinformatics or chemometrics in data analysis can assist the researcher in improving the currently available techniques. Designing a vast range of instruments and analytical methods at the molecular level is vital for overcoming the technical drawback in discriminating chicken from other species and even within its breed. This review aims to provide insight and highlight previous and current approaches suitable for countering different circumstances in chicken authentication.
Broiler chicken (Gallus gallus) is a source of animal protein with a high nutritional content. The purpose of this study was to evaluate the quality of broiler chicken meat (Gallus gallus) by analyzing its nutritional value, genetic profile, and protein level. The chicken meat samples were obtained from four different districts in Malang city, Indonesia. We analysed the proximate composition of chicken meat to detect its nutrition content. Furthermore, we have examined the sequence of the Myoz1 gene as well as the level of ApoB proteins in the same meat. The nutritional analysis of chicken meat showed that in the four locations different levels of protein, ash, water, and lipids were observed. The Myoz1 gene of femur chicken broilers from the second and third districts has five and twenty-one substitution mutations, respectively. The ApoB expression level in locations 2 and 3 was higher than that in the other districts. In conclusion, Myoz1 and ApoB levels were correlated with the nutritional content and quality of broiler chicken meat.