Apoptosis is often the end result of oxidative damage to neurons. Due to shared pathways between oxidative stress, apoptosis and antioxidant defence systems, an oxidative insult could end up causing cellular apoptosis or survival depending on the severity of the insult and cellular responses. Plant bioresources have received close attention in recent years for their potential role in regulating the pathways involved in apoptosis and oxidative stress in favour of cell survival. Rice bran is a bioactive-rich by-product of rice milling process. It possesses antioxidant properties, making it a promising source of antioxidants that could potentially prevent oxidative stress-induced neurodegenerative diseases.
The neuroprotective and antioxidative effects of germinated brown rice (GBR), brown rice (BR) and commercially available γ-aminobutyric acid (GABA) against cell death induced by hydrogen peroxide (H(2)O(2)) in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H(2)O(2)-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP) and prevented phosphatidylserine (PS) translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis.