Displaying all 2 publications

Abstract:
Sort:
  1. Allehiany FM, Memon AA, Memon MA, Fenta A
    Sci Rep, 2023 Oct 08;13(1):16961.
    PMID: 37807009 DOI: 10.1038/s41598-023-44272-7
    In recent years, global energy demand has surged, emphasizing the need for nations to enhance energy resources. The photovoltaic thermal (PV/T) system, capable of generating electrical energy from sunlight, is a promising renewable energy solution. However, it faces the challenge of overheating, which reduces efficiency. To address this, we introduce a flow channel within the PV/T system, allowing coolant circulation to improve electrical efficiency. Within this study, we explore into the workings of a PV/T system configuration, featuring a polycrystalline silicon panel atop a copper absorber panel. This innovative setup incorporates a rectangular flow channel, enhanced with a centrally positioned rotating circular cylinder, designed to augment flow velocity. This arrangement presents a forced convection scenario, where heat transfer primarily occurs through conduction in the uppermost two layers, while the flow channel beneath experiences forced convection. To capture this complex phenomenon, we accurately address the two-dimensional Navier-Stokes and energy equations, employing simulations conducted via COMSOL 6.0 software, renowned for its utilization of the finite element method. To optimize heat dissipation and efficiency, we introduce a hybrid nanofluid comprised of titanium oxide and silver nanoparticles dispersed in water, circulating through the flow channel. Various critical parameters come under scrutiny, including the Reynolds number, explored across the range of 100-1000, the volume fractions of both nanoparticle types, systematically tested within the range of 0.001-0.05, and the controlled speed of the circular cylinder, maintained within the range of 0.1-0.25 m/s. It was found that incorporating silver nanoparticles as a suspended component is more effective in enhancing PV/T efficiency than the addition of titanium oxide. Additionally, maintaining the volume fraction of titanium oxide between 4 and 5% yields improved efficiency, provided that the cylinder rotates at a higher speed. It was observed that cell efficiency can be regulated by adjusting four parameters, such as the Reynolds number, cylinder rotation speed, and the volume fraction of both nanoparticles.
  2. Alqarni MM, Memon AA, Memon MA, Mahmoud EE, Fenta A
    Nanoscale Adv, 2023 Dec 05;5(24):6897-6912.
    PMID: 38059033 DOI: 10.1039/d3na00818e
    The characteristics of nanomaterials have garnered significant attention in recent research on natural and forced convection. This study focuses on the forced convection characteristics of ternary nanofluids within convergent and divergent channels. The ternary nanofluid comprises titanium oxide (TiO2), zinc oxide (ZnO), and silver suspended in water, which serves as the base fluid. Using COMSOL Multiphysics 6.0, a reliable software for finite element analysis, numerical simulations were conducted for steady and incompressible two-dimensional flow. Reynolds numbers varying from 100 to 800 were employed to investigate forced convection. Additionally, we explored aspect ratios (channel height divided by the height of the convergent or divergent section) of -0.4, -0.2, 0, 0.2, and 0.4. Our findings revealed that only at aspect ratio a = 0.4 did the average outlet temperature increase as the Reynolds number rose, while other aspect ratios exhibited decreasing average temperatures with declining Reynolds numbers. Moreover, as the Reynolds number increased from 100 to 800 and the total volume fraction of the ternary nanofluids ranged from 0.003 to 0.15, there was a significant 100% enhancement in the average Nusselt number. For clarity, this article briefly presents essential information, such as the study's numerical nature, fluid properties (constant-property fluid), and the methodology (COMSOL Multiphysics 6.0, finite element analysis). Key conclusions are highlighted to enable readers to grasp the main outcomes at a glance. These details are also adequately covered in the manuscript to facilitate a comprehensive understanding of the research. The utilization of this emerging phenomenon holds immense potential in various applications, ranging from the development of highly efficient heat exchangers to the optimization of thermal energy systems. This phenomenon can be harnessed in scenarios in which effective cost management in thermal production is a critical consideration.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links