Displaying all 2 publications

Abstract:
Sort:
  1. Subramani IG, Perumal V, Gopinath SCB, Fhan KS, Mohamed NM
    Crit Rev Anal Chem, 2021 Mar 11.
    PMID: 33691533 DOI: 10.1080/10408347.2021.1889962
    Over the past decade, science has experienced a growing rise in nanotechnology with ground-breaking contributions. Through various laborious technologies, nanomaterials with different architectures from 0 D to 3 D have been synthesized. However, the 3 D flower-like organic-inorganic hybrid nanomaterial with the most direct one-pot green synthesis method has attracted widespread attention and instantly become research hotspot since its first allusion in 2012. Mild synthesis procedure, high surface-to-volume ratio, enhanced enzymatic activity and stability are the main factor for its rapid development. However, its lower mechanical strength, difficulties in recovery from the reaction system, lower loading capacity, poor reusability and accessibility of enzymes are fatal, which hinders its wide application in industry. This review first discusses the selection of non-enzymatic biomolecules for the synthesis of hybrid nanoflowers followed by the innovative advancements made in organic-inorganic hybrid nanoflowers to overcome aforementioned issues and to enhance their extensive downstream applications in transduction technologies. Besides, the role of hybrid nanoflower has been successfully utilized in many fields including, water remediation, biocatalyst, pollutant adsorption and decolourization, nanoreactor, biosensing, cellular uptake and others, accompanied with several quantification technologies, such as ELISA, electrochemical, surface plasmon resonance (SPR), colorimetric, and fluorescence were comprehensively reviewed.
  2. Meng CE, Sharifah Robiah Mohamad CW, Mohd Nasir NF, Fhan KS, Liang OH, Jian TX, et al.
    Heliyon, 2024 Jan 15;10(1):e23847.
    PMID: 38332888 DOI: 10.1016/j.heliyon.2023.e23847
    The mineral composition, crystallinity, and dielectric properties of salts can provide valuable insights into the quality and suitability of different types of salt for various applications. In this study, comprehensive analysis of the X-Ray Diffraction (XRD), X-ray fluorescence (XRF) and dielectric analysis of the Ba'kelalan salt, Himalaya salt and Bamboo salt have been investigated. The mineral composition of these salts, encompassing vital elements such as iodine and other trace minerals, significantly influences the salt's nutritional profile and overall excellence. Nonetheless, gauging the dispersion and density of these minerals poses difficulties due to conventional techniques that can be arduous, damaging, and expensive. Sample preparation is carried out before conducting X-ray diffraction (XRD), X-ray fluorescence (XRF), and dielectric analysis. XRD measurements are performed using the Bruker D2 Phaser to identify crystalline material phases. XRD operates on the principle of constructive X-ray interference within crystalline samples. For elemental analysis across a broad spectrum of materials, XRF is employed. Elemental peaks are scanned, starting from the lowest to the highest angle of incidence. The X-ray intensity at characteristic peaks is compared to the standard series. Dielectric spectroscopy analysis examines the dielectric behaviour of Ba'kelalan salt, Himalaya salt, and Bamboo salt. The setup involves a vector network analyser (VNA) paired with an open-ended coaxial probe, utilizing the microwave method. This approach ensures rapid, efficient, and non-destructive measurements of dielectric constants (ε') and loss factors (ε"). The dielectric permittivity spectra are acquired within the frequency range of 4 GHz-20 GHz. ε' of these salts increase with frequency. Meanwhile, ε" seem varies insignificantly over frequency. Mineral contents and crystallinity are the crucial factors lead to these responses. Based on the study, the quality and suitability of the selected salts for specific applications can be determined by considering their mineral composition, crystallinity, and dielectric properties in the context of the intended use. This gives an insight for some applications that may benefit from certain minerals or crystalline structures, others may require specific dielectric properties for effective use. Therefore, understanding these properties allows for decision-making in choosing the right type of salt for a given purpose, whether it's for foods, medical, industrial, healthcare, and technological applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links