Displaying all 5 publications

Abstract:
Sort:
  1. Szulkin R, Karlsson R, Whitington T, Aly M, Gronberg H, Eeles RA, et al.
    Cancer Epidemiol Biomarkers Prev, 2015 Nov;24(11):1796-800.
    PMID: 26307654 DOI: 10.1158/1055-9965.EPI-15-0543
    BACKGROUND: Unnecessary intervention and overtreatment of indolent disease are common challenges in clinical management of prostate cancer. Improved tools to distinguish lethal from indolent disease are critical.

    METHODS: We performed a genome-wide survival analysis of cause-specific death in 24,023 prostate cancer patients (3,513 disease-specific deaths) from the PRACTICAL and BPC3 consortia. Top findings were assessed for replication in a Norwegian cohort (CONOR).

    RESULTS: We observed no significant association between genetic variants and prostate cancer survival.

    CONCLUSIONS: Common genetic variants with large impact on prostate cancer survival were not observed in this study.

    IMPACT: Future studies should be designed for identification of rare variants with large effect sizes or common variants with small effect sizes.

  2. Dadaev T, Saunders EJ, Newcombe PJ, Anokian E, Leongamornlert DA, Brook MN, et al.
    Nat Commun, 2018 06 11;9(1):2256.
    PMID: 29892050 DOI: 10.1038/s41467-018-04109-8
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.
  3. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
    Nat Genet, 2018 07;50(7):928-936.
    PMID: 29892016 DOI: 10.1038/s41588-018-0142-8
    Genome-wide association studies (GWAS) and fine-mapping efforts to date have identified more than 100 prostate cancer (PrCa)-susceptibility loci. We meta-analyzed genotype data from a custom high-density array of 46,939 PrCa cases and 27,910 controls of European ancestry with previously genotyped data of 32,255 PrCa cases and 33,202 controls of European ancestry. Our analysis identified 62 novel loci associated (P C, p.Pro1054Arg) in ATM and rs2066827 (OR = 1.06; P = 2.3 × 10-9; T>G, p.Val109Gly) in CDKN1B. The combination of all loci captured 28.4% of the PrCa familial relative risk, and a polygenic risk score conferred an elevated PrCa risk for men in the ninetieth to ninety-ninth percentiles (relative risk = 2.69; 95% confidence interval (CI): 2.55-2.82) and first percentile (relative risk = 5.71; 95% CI: 5.04-6.48) risk stratum compared with the population average. These findings improve risk prediction, enhance fine-mapping, and provide insight into the underlying biology of PrCa1.
  4. Schumacher FR, Olama AAA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
    Nat Genet, 2019 02;51(2):363.
    PMID: 30622367 DOI: 10.1038/s41588-018-0330-6
    In the version of this article initially published, the name of author Manuela Gago-Dominguez was misspelled as Manuela Gago Dominguez. The error has been corrected in the HTML and PDF version of the article.
  5. Kar SP, Beesley J, Amin Al Olama A, Michailidou K, Tyrer J, Kote-Jarai Z, et al.
    Cancer Discov, 2016 Sep;6(9):1052-67.
    PMID: 27432226 DOI: 10.1158/2159-8290.CD-15-1227
    Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10(-8) seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis.

    SIGNIFICANCE: We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links