Displaying all 5 publications

Abstract:
Sort:
  1. Numata S, Yasuda M, Suzuki RO, Hosaka T, Noor NS, Fletcher CD, et al.
    PLoS One, 2013;8(11):e79095.
    PMID: 24260159 DOI: 10.1371/journal.pone.0079095
    In South-East Asian dipterocarp forests, many trees synchronize their reproduction at the community level, but irregularly, in a phenomenon known as general flowering (GF). Several proximate cues have been proposed as triggers for the synchronization of Southeast Asian GF, but the debate continues, as many studies have not considered geographical variation in climate and flora. We hypothesized that the spatial pattern of GF forests is explained by previously proposed climatic cues if there are common cues for GF among regions. During the study, GF episodes occurred every year, but the spatial occurrence varied considerably from just a few forests to the whole of Peninsular Malaysia. In 2001, 2002 and 2005, minor and major GF occurred widely throughout Peninsular Malaysia (GF2001, GF2002, and GF2005), and the geographical patterns of GF varied between the episodes. In the three regional-scale GF episodes, most major events occurred in regions where prolonged drought (PD) had been recorded prior, and significant associations between GF scores and PD were found in GF2001 and GF2002. However, the frequency of PD was higher than that of GF throughout the peninsula. In contrast, low temperature (LT) was observed during the study period only before GF2002 and GF2005, but there was no clear spatial relationship between GF and LT in the regional-scale episodes. There was also no evidence that last GF condition influenced the magnitude of GF. Thus, our results suggest that PD would be essential to trigger regional-scale GF in the peninsula, but also that PD does not fully explain the spatial and temporal patterns of GF. The coarse relationships between GF and the proposed climatic cues may be due to the geographical variation in proximate cues for GF, and the climatic and floristic geographical variations should be considered to understand the proximate factors of GF.
  2. Wright SJ, Sun IF, Pickering M, Fletcher CD, Chen YY
    Ecology, 2015 Oct;96(10):2748-57.
    PMID: 26649395 DOI: 10.1890/14-1985.1
    The importance of lianas through time and their effect on tree reproduction are evaluated for the first time in a Southeast Asian Dipterocarp forest. We quantified flower and seed production by lianas and trees for 13 years, assessed liana loads in the crowns of all trees larger than 30 cm in diameter at breast height (1.3 m) in 2002 and 2014, and assessed levels of reproduction for the same trees during a strong general flowering event in 2014 for the 50-ha forest dynamics plot at the Pasoh Forest Reserve, Malaysia. General flowering refers to synchronous reproduction by hundreds of plant species at irregular, multiyear intervals and only occurs in Southeast Asian Dipterocarp forests. Overall, lianas were present in 50% of tree crowns and comprised 31% of flower production and 46% of seed production. Lianas reduced growth, survival, and reproduction by their host trees. Lianas were less frequent in canopy- emergent trees, Dipterocarps comprised a disproportionately large proportion of canopy emergents, and, as a consequence, lianas were less frequent in Dipterocarps than in trees from other plant families. Lianas infested the crowns of significantly fewer trees in 2014 (47.9%) than in 2002 (52.3%); however, the decrease was restricted to trees with the lightest liana loads and sample sizes and statistical power were enormous. Lianas comprised a stable proportion of flower production and a highly variable proportion of seed production from 2002 through 2013. We conclude lianas have a huge impact on trees in this forest and were a stable component of the forest between 2002 and 2014. The emergent habit and associated ability to avoid lianas might contribute to the success of the Dipterocarpaceae.
  3. Wills C, Wang B, Fang S, Wang Y, Jin Y, Lutz J, et al.
    PLoS Comput Biol, 2021 Apr;17(4):e1008853.
    PMID: 33914731 DOI: 10.1371/journal.pcbi.1008853
    When Darwin visited the Galapagos archipelago, he observed that, in spite of the islands' physical similarity, members of species that had dispersed to them recently were beginning to diverge from each other. He postulated that these divergences must have resulted primarily from interactions with sets of other species that had also diverged across these otherwise similar islands. By extrapolation, if Darwin is correct, such complex interactions must be driving species divergences across all ecosystems. However, many current general ecological theories that predict observed distributions of species in ecosystems do not take the details of between-species interactions into account. Here we quantify, in sixteen forest diversity plots (FDPs) worldwide, highly significant negative density-dependent (NDD) components of both conspecific and heterospecific between-tree interactions that affect the trees' distributions, growth, recruitment, and mortality. These interactions decline smoothly in significance with increasing physical distance between trees. They also tend to decline in significance with increasing phylogenetic distance between the trees, but each FDP exhibits its own unique pattern of exceptions to this overall decline. Unique patterns of between-species interactions in ecosystems, of the general type that Darwin postulated, are likely to have contributed to the exceptions. We test the power of our null-model method by using a deliberately modified data set, and show that the method easily identifies the modifications. We examine how some of the exceptions, at the Wind River (USA) FDP, reveal new details of a known allelopathic effect of one of the Wind River gymnosperm species. Finally, we explore how similar analyses can be used to investigate details of many types of interactions in these complex ecosystems, and can provide clues to the evolution of these interactions.
  4. Needham JF, Johnson DJ, Anderson-Teixeira KJ, Bourg N, Bunyavejchewin S, Butt N, et al.
    Glob Chang Biol, 2022 Jan 25.
    PMID: 35080088 DOI: 10.1111/gcb.16100
    The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1,961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass, and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either aboveground biomass or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct demographic compositions of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the demographic composition of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure and function.
  5. Cooper DLM, Lewis SL, Sullivan MJP, Prado PI, Ter Steege H, Barbier N, et al.
    Nature, 2024 Jan;625(7996):728-734.
    PMID: 38200314 DOI: 10.1038/s41586-023-06820-z
    Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links