Displaying all 2 publications

Abstract:
Sort:
  1. Foo KS, Bavoh CB, Lal B, Mohd Shariff A
    Molecules, 2020 Aug 15;25(16).
    PMID: 32824121 DOI: 10.3390/molecules25163725
    In this study, series of non-ionic surfactants from Span and Tween are evaluated for their ability to affect the viscosity profile of cyclopentane hydrate slurry. The surfactants; Span 20, Span 40, Span 80, Tween 20, Tween 40 and Tween 80 were selected and tested to provide different hydrophilic-hydrophobic balance values and allow evaluation their solubility impact on hydrate formation and growth time. The study was performed by using a HAAKE ViscotesterTM 500 at 2 °C and a surfactant concentration ranging from 0.1 wt%-1 wt%. The solubility characteristic of the non-ionic surfactants changed the hydrate slurry in different ways with surfactants type and varying concentration. The rheological measurement suggested that oil-soluble Span surfactants was generally inhibitive to hydrate formation by extending the hydrate induction time. However, an opposite effect was observed for the Tween surfactants. On the other hand, both Span and Tween demonstrated promoting effect to accelerate hydrate growth time of cyclopentane hydrate formation. The average hydrate crystallization growth time of the blank sample was reduced by 86% and 68% by Tween and Span surfactants at 1 wt%, respectively. The findings in this study are useful to understand the rheological behavior of surfactants in hydrate slurry.
  2. Bharathi A, Nashed O, Lal B, Foo KS
    Sci Rep, 2021 01 27;11(1):2396.
    PMID: 33504918 DOI: 10.1038/s41598-021-82056-z
    This paper presents an experimental and modeling studies on the thermodynamic inhibition effects of the mixture of monoethlyene glycol (MEG) and glycine (Gly) on the carbon dioxide hydrate phase boundary condition. The monoethlyene glycol and glycine (1:1) mixture inhibition effects were investigated at concentrations of 5, 10, and 15 wt.% and pressure ranges from 2.0-4.0 MPa. The effects of the proposed mixture on the carbon dioxide hydrate phase boundary were evaluated by measuring the dissociation temperature of carbon dioxide hydrate using a T-cycle method. The synergistic effect was evaluated based on comparison with pure MEG and Gly data. The results show that 15 wt.% of MEG and Gly mixture displays the highest inhibition effect compared to the 5 and 10 wt.% mixtures, respectively. However, the synergistic effect is higher at 10 wt.%. Dickens' model was also adopted to predict the phase equilibrium data of CO2 hydrates in the presence of the mixture. The modified model successfully predicted the data within a maximum error of ± 0.52 K.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links