METHOD: C-reactive Protein (CRP) is a commonly used inflammatory marker in orthopedic surgery and has proven to be a valuable biomarker for diagnosing and monitoring infections. Specifically, CRP aids in the early identification of postoperative infections. This research work has focused on developing a highly sensitive CRP biosensor using iron oxide nanomaterial-modified dielectric sensors.
RESULT: Gold Urchin (GU)-conjugated aptamers and antibodies were used as probes and attached to the electrode via amine linkers. The aptamer-GU-antibody-modified electrode detected CRP at concentrations as low as 1 pg/mL, with an R2 value of 0.9942. Furthermore, CRP-spiked serum exhibited an increase in current response at all concentrations of CRP, indicating selective detection of CRP. Additionally, control experiments using complementary sequences of the aptamer, relevant proteins, and non-immune antibodies did not enhance the current responses, confirming the specific identification of CRP.
CONCLUSION: The sensing strategy has enabled the detection of CRP at its lowest levels, facilitating the identification of infections during orthopedic surgery and subsequent treatment.
METHODOLOGY: We performed a cross-sectional cohort study on healthy subjects and patients with glaucoma. The AngioVue Enhanced Microvascular Imaging System was used to capture the optic nerve head and macula images during one visit. En face segment images of the macular and optic disc were studied in layers. Microvascular density of the optic nerve head and macula were quantified by the number of pixels measured by a novel in-house developed software. Areas under the receiver operating characteristic curves (AUROC) were used to determine the accuracy of differentiating between glaucoma and healthy subjects.
RESULTS: A total of 24 (32 eyes) glaucoma subjects (57.5±9.5-y old) and 29 (58 eyes) age-matched controls (51.17±13.5-y old) were recruited. Optic disc and macula scans were performed showing a greater mean vessel density (VD) in healthy compared with glaucoma subjects. The control group had higher VD than the glaucoma group at the en face segmented layers of the optic disc (optic nerve head: 0.209±0.05 vs. 0.110±0.048, P<0.001; vitreoretinal interface: 0.086±0.045 vs. 0.052±0.034, P=0.001; radial peripapillary capillary: 0.146±0.040 vs. 0.053±0.036, P<0.001; and choroid: 0.228±0.074 vs. 0.165±0.062, P<0.001). Similarly, the VD at the macula was also greater in controls than glaucoma patients (superficial retina capillary plexus: 0.115±0.016 vs. 0.088±0.027, P<0.001; deep retina capillary plexus: 0.233±0.027 vs. 0.136±0.073, P<0.001; outer retinal capillary plexus: 0.190±0.057 vs. 0.136±0.105, P=0.036; and choriocapillaris: 0.225±0.053 vs. 0.153±0.068, P<0.001. The AUROC was highest for optic disc radial peripapillary capillary (0.96), followed by nerve head (0.92) and optic disc choroid (0.76). At the macula, the AUROC was highest for deep retina (0.86), followed by choroid (0.84), superficial retina (0.81), and outer retina (0.72).
CONCLUSIONS: Microvascular density of the optic disc and macula in glaucoma patients was reduced compared with healthy controls. VD of both optic disc and macula had a high diagnostic ability in differentiating healthy and glaucoma eyes.