Objective: To examine the long-term effects of lipid-lowering therapy on all-cause mortality, cardiovascular morbidity, CKD progression, and socioeconomic well-being in Australian, New Zealand, and Malaysian SHARP (Study of Heart and Renal Protection) trial participants-a randomized controlled trial of a combination of simvastatin and ezetimibe, compared with placebo, for the reduction of cardiovascular events in moderate to severe CKD.
Design: Protocol for an extended prospective observational follow-up.
Setting: Australian, New Zealand, and Malaysian participating centers in patients with advanced CKD.
Patients: All SHARP trial participants alive at the final study visit.
Measurements: Primary outcomes were measured by participant self-report and verified by hospital administrative data. In addition, secondary outcomes were measured using a validated study questionnaire of health-related quality of life, a 56-item economic survey.
Methods: Participants were followed up with alternating face-to-face visits and telephone calls on a 6-monthly basis until 5 years following their final SHARP Study visit. In addition, there were 6-monthly follow-up telephone calls in between these visits. Data linkage to health registries in Australia, New Zealand, and Malaysia was also performed.
Results: The SHARP-Extended Review (SHARP-ER) cohort comprised 1136 SHARP participants with a median of 4.6 years of follow-up. Compared with all SHARP participants who originally participated in the Australian, New Zealand, and Malaysian regions, the SHARP-ER participants were younger (57.2 [48.3-66.4] vs 60.5 [50.3-70.7] years) with a lower proportion of men (61.5% vs 62.8%). There were a lower proportion of participants with hypertension (83.7% vs 85.0%) and diabetes (20.0% vs 23.5%).
Limitations: As a long-term follow-up study, the surviving cohort of SHARP-ER is a selected group of the original study participants, which may limit the generalizability of the findings.
Conclusion: The SHARP-ER study will contribute important evidence on the long-term outcomes of cholesterol-lowering therapy in patients with advanced CKD with a total of 10 years of follow-up. Novel analyses of the socioeconomic impact of CKD over time will guide resource allocation.
Trial Registration: The SHARP trial was registered at ClinicalTrials.gov NCT00125593 and ISRCTN 54137607.
BACKGROUND: Data are conflicting on the optimal strategy to reduce CAAKI and related complications after percutaneous coronary intervention (PCI).
METHODS: The PRESERVE (Prevention of Serious Adverse Events Following Angiography) trial used a 2 × 2 factorial design to randomize 5,177 patients with stage III or IV chronic kidney disease undergoing angiography to IV 1.26% sodium bicarbonate or IV 0.9% sodium chloride and 5 days of oral acetylcysteine or placebo. A subgroup analysis was conducted of the efficacy of these interventions in patients who underwent PCI during the study angiographic examination. The primary endpoint was a composite of death, need for dialysis, or persistent kidney impairment at 90 days; CAAKI was a secondary endpoint.
RESULTS: A total of 1,161 PRESERVE patients (mean age 69 ± 8 years) underwent PCI. The median estimated glomerular filtration rate was 50.7 ml/min/1.73 m2 (interquartile range: 41.7 to 60.1 ml/min/1.73 m2), and 952 patients (82%) had diabetes mellitus. The primary endpoint occurred in 15 of 568 patients (2.6%) in the IV sodium bicarbonate group and 24 of 593 patients (4.0%) in the IV sodium chloride group (odds ratio: 0.64; 95% confidence interval: 0.33 to 1.24; p for interaction = 0.41) and in 23 of 598 patients (3.8%) in the acetylcysteine group and 16 of 563 patients (2.8%) in the placebo group (odds ratio: 1.37; 95% confidence interval: 0.71 to 2.62; p for interaction = 0.29). There were no significant between-group differences in the rates of CAAKI.
CONCLUSIONS: Among patients with CKD undergoing PCI, there was no benefit of IV sodium bicarbonate over IV sodium chloride or of acetylcysteine over placebo for the prevention of CAAKI or intermediate-term adverse outcomes.
SUMMARY ANSWER: High-throughput flagellar waveform tracking and analysis enable measurement of experimentally intractable quantities such as energy dissipation, disturbance of the surrounding medium and viscous stresses, which are not possible by tracking the sperm head alone.
WHAT IS KNOWN ALREADY: The clinical gold standard for sperm motility analysis comprises a manual analysis by a trained professional, with existing automated sperm diagnostics [computer-aided sperm analysis (CASA)] relying on tracking the sperm head and extrapolating measures. It is not currently possible with either of these approaches to track the sperm flagellar waveform for large numbers of cells in order to unlock the potential wealth of information enclosed within.
STUDY DESIGN, SIZE, DURATION: The software tool in this manuscript has been developed to enable high-throughput, repeatable, accurate and verifiable analysis of the sperm flagellar beat.
PARTICIPANTS/MATERIALS, SETTING, METHODS: Using the software tool [Flagellar Analysis and Sperm Tracking (FAST)] described in this manuscript, we have analysed 176 experimental microscopy videos and have tracked the head and flagellum of 205 progressive cells in diluted semen (DSM), 119 progressive cells in a high-viscosity medium (HVM) and 42 stuck cells in a low-viscosity medium. Unscreened donors were recruited at Birmingham Women's and Children's NHS Foundation Trust after giving informed consent.
MAIN RESULTS AND THE ROLE OF CHANCE: We describe fully automated tracking and analysis of flagellar movement for large cell numbers. The analysis is demonstrated on freely motile cells in low- and high-viscosity fluids and validated on published data of tethered cells undergoing pharmacological hyperactivation. Direct analysis of the flagellar beat reveals that the CASA measure 'beat cross frequency' does not measure beat frequency; attempting to fit a straight line between the two measures gives ${\mathrm{R}}^2$ values of 0.042 and 0.00054 for cells in DSM and HVM, respectively. A new measurement, track centroid speed, is validated as an accurate differentiator of progressive motility. Coupled with fluid mechanics codes, waveform data enable extraction of experimentally intractable quantities such as energy dissipation, disturbance of the surrounding medium and viscous stresses. We provide a powerful and accessible research tool, enabling connection of the mechanical activity of the sperm to its motility and effect on its environment.
LARGE SCALE DATA: The FAST software package and all documentation can be downloaded from www.flagellarCapture.com.
LIMITATIONS, REASONS FOR CAUTION: The FAST software package has only been tested for use with negative phase contrast microscopy. Other imaging modalities, with bright cells on a dark background, have not been tested but may work. FAST is not designed to analyse raw semen; it is specifically for precise analysis of flagellar kinematics, as that is the promising area for computer use. Flagellar capture will always require that cells are at a dilution where their paths do not frequently cross.
WIDER IMPLICATIONS OF THE FINDINGS: Combining tracked flagella with mathematical modelling has the potential to reveal new mechanistic insight. By providing the capability as a free-to-use software package, we hope that this ability to accurately quantify the flagellar waveform in large populations of motile cells will enable an abundant array of diagnostic, toxicological and therapeutic possibilities, as well as creating new opportunities for assessing and treating male subfertility.
STUDY FUNDING/COMPETING INTEREST(S): M.T.G., G.C., J.C.K-B. and D.J.S. gratefully acknowledge funding from the Engineering and Physical Sciences Research Council, Healthcare Technologies Challenge Award (Rapid Sperm Capture EP/N021096/1). J.C.K-B. is funded by a National Institute of Health Research (NIHR) and Health Education England, Senior Clinical Lectureship Grant: The role of the human sperm in healthy live birth (NIHRDH-HCS SCL-2014-05-001). This article presents independent research funded in part by the NIHR and Health Education England. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The data for experimental set (2) were funded through a Wellcome Trust-University of Birmingham Value in People Fellowship Bridging Award (E.H.O.).The authors declare no competing interests.
METHODS: All participants alive at final SHARP study visit in participating centres were eligible for inclusion. Consenting participants were re-enrolled following final SHARP Study visit and followed for 5 years. Data collection included: significant medical events, hospital admissions and requirement for kidney replacement therapy. Data linkage was performed to national kidney and mortality registries. The primary outcome was all-cause mortality compared across the three countries.
RESULTS: The SHARP trial randomized 2029 participants from AUS (1043/2029, 51%), MYL (701/2029, 35%), and NZ (285/2029, 14%), with 1136 participants alive and eligible for extended follow-up at the end of SHARP. In multivariable analysis, risk of death was increased for participants in MYL (HR 1.37, 95% CI 1.17-1.61, p
METHODS: Study within a trial of an international parallel group randomized controlled trial (RCT) that compares spironolactone to placebo. Adults receiving dialysis enter an 8-week active run-in period with spironolactone. Adherence was assessed by both self-report and pill counts in a subgroup of participants at both 3 weeks and 7 weeks.
RESULTS: 332 participants entered the run-in period of which 166 had complete data. By self-report, 146/166 (94.0%) and 153/166 (92.2%) had at least 80% adherence at 3 and 7 weeks respectively (kappa = 0.27 (95% C.I. 0.16 to 0.38). By pill counts, the mean (SD) adherence was 96.5% (16.1%) and 92.4% (18.2%) at 3 and 7 weeks respectively (r = 0.32) with a mean (SD) difference of 3.1% (17.8%) and a 95% limit of agreement from -31.7% to +37.9%. The proportion of adherent participants by self-report and pill counts at 3 weeks agreed in 87.4% of participants (McNemar's p-value 0.58, kappa 0.11, p = 0.02) and at 7 weeks agreed in 92.2% (McNemar's p-value 0.82, kappa 0.47, p