Displaying all 4 publications

  1. Gaveau DL, Sheil D, Husnayaen, Salim MA, Arjasakusuma S, Ancrenaz M, et al.
    Sci Rep, 2016 09 08;6:32017.
    PMID: 27605501 DOI: 10.1038/srep32017
    New plantations can either cause deforestation by replacing natural forests or avoid this by using previously cleared areas. The extent of these two situations is contested in tropical biodiversity hotspots where objective data are limited. Here, we explore delays between deforestation and the establishment of industrial tree plantations on Borneo using satellite imagery. Between 1973 and 2015 an estimated 18.7 Mha of Borneo's old-growth forest were cleared (14.4 Mha and 4.2 Mha in Indonesian and Malaysian Borneo). Industrial plantations expanded by 9.1 Mha (7.8 Mha oil-palm; 1.3 Mha pulpwood). Approximately 7.0 Mha of the total plantation area in 2015 (9.2 Mha) were old-growth forest in 1973, of which 4.5-4.8 Mha (24-26% of Borneo-wide deforestation) were planted within five years of forest clearance (3.7-3.9 Mha oil-palm; 0.8-0.9 Mha pulpwood). This rapid within-five-year conversion has been greater in Malaysia than in Indonesia (57-60% versus 15-16%). In Indonesia, a higher proportion of oil-palm plantations was developed on already cleared degraded lands (a legacy of recurrent forest fires). However, rapid conversion of Indonesian forests to industrial plantations has increased steeply since 2005. We conclude that plantation industries have been the principle driver of deforestation in Malaysian Borneo over the last four decades. In contrast, their role in deforestation in Indonesian Borneo was less marked, but has been growing recently. We note caveats in interpreting these results and highlight the need for greater accountability in plantation development.
  2. Gaveau DL, Sloan S, Molidena E, Yaen H, Sheil D, Abram NK, et al.
    PLoS ONE, 2014;9(7):e101654.
    PMID: 25029192 DOI: 10.1371/journal.pone.0101654
    The native forests of Borneo have been impacted by selective logging, fire, and conversion to plantations at unprecedented scales since industrial-scale extractive industries began in the early 1970s. There is no island-wide documentation of forest clearance or logging since the 1970s. This creates an information gap for conservation planning, especially with regard to selectively logged forests that maintain high conservation potential. Analysing LANDSAT images, we estimate that 75.7% (558,060 km2) of Borneo's area (737,188 km2) was forested around 1973. Based upon a forest cover map for 2010 derived using ALOS-PALSAR and visually reviewing LANDSAT images, we estimate that the 1973 forest area had declined by 168,493 km2 (30.2%) in 2010. The highest losses were recorded in Sabah and Kalimantan with 39.5% and 30.7% of their total forest area in 1973 becoming non-forest in 2010, and the lowest in Brunei and Sarawak (8.4%, and 23.1%). We estimate that the combined area planted in industrial oil palm and timber plantations in 2010 was 75,480 km2, representing 10% of Borneo. We mapped 271,819 km of primary logging roads that were created between 1973 and 2010. The greatest density of logging roads was found in Sarawak, at 0.89 km km-2, and the lowest density in Brunei, at 0.18 km km-2. Analyzing MODIS-based tree cover maps, we estimate that logging operated within 700 m of primary logging roads. Using this distance, we estimate that 266,257 km2 of 1973 forest cover has been logged. With 389,566 km2 (52.8%) of the island remaining forested, of which 209,649 km2 remains intact. There is still hope for biodiversity conservation in Borneo. Protecting logged forests from fire and conversion to plantations is an urgent priority for reducing rates of deforestation in Borneo.
  3. Runting RK, Meijaard E, Abram NK, Wells JA, Gaveau DL, Ancrenaz M, et al.
    Nat Commun, 2015 04 14;6:6819.
    PMID: 25871635 DOI: 10.1038/ncomms7819
    Balancing economic development with international commitments to protect biodiversity is a global challenge. Achieving this balance requires an understanding of the possible consequences of alternative future scenarios for a range of stakeholders. We employ an integrated economic and environmental planning approach to evaluate four alternative futures for the mega-diverse island of Borneo. We show what could be achieved if the three national jurisdictions of Borneo coordinate efforts to achieve their public policy targets and allow a partial reallocation of planned land uses. We reveal the potential for Borneo to simultaneously retain ∼50% of its land as forests, protect adequate habitat for the Bornean orangutan (Pongo pygmaeus) and Bornean elephant (Elephas maximus borneensis), and achieve an opportunity cost saving of over US$43 billion. Such coordination would depend on enhanced information sharing and reforms to land-use planning, which could be supported by the increasingly international nature of economies and conservation efforts.
  4. Wijedasa LS, Jauhiainen J, Könönen M, Lampela M, Vasander H, Leblanc MC, et al.
    Glob Chang Biol, 2017 03;23(3):977-982.
    PMID: 27670948 DOI: 10.1111/gcb.13516
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links