Displaying all 3 publications

Abstract:
Sort:
  1. Ploetz RC, Palmateer AJ, Geiser DM, Juba JH
    Plant Dis, 2007 May;91(5):639.
    PMID: 30780734 DOI: 10.1094/PDIS-91-5-0639A
    Roselle, Hibiscus sabdariffa var. sabdariffa, is an annual that is grown primarily for its inflated calyx, which is used for drinks and jellies. It is native from India to Malaysia, but was taken at an early date to Africa and is now widely grown in the tropics and subtropics (2). In late 2005, dying plants were noted by a producer in South Florida. Plants wilted, became chlorotic, and developed generally unthrifty, sparse canopies. Internally, conspicuous vascular discoloration was evident in these plants from the roots into the canopy. After 5 days on one-half-strength potato dextrose agar (PDA), salmon-colored fungal colonies grew almost exclusively from surface-disinfested 5 mm2 pieces of vascular tissue. On banana leaf agar, single-spored strains produced the following microscopic characters of Fusarium oxysporum: copious microconidia on monophialides, infrequent falcate macroconidia, and terminal and intercalary chlamydospores. Partial, elongation factor 1-α (EF1-α) sequences were generated for two of the strains, O-2424 and O-2425, and compared with previously reported sequences for the gene (3). Maximum parsimony analysis of sequences showed that both strains fell in a large, previously described clade of the F. oxysporum complex (FOC) that contained strains from agricultural hosts, as well as human clinical specimens (2; clade 3 in Fig. 4); many of the strains in this clade have identical EF1-α sequences. Strains of F. oxysporum recovered from wilted roselle in Egypt, O-647 and O-648 in the Fusarium Research Center collection, were distantly related to the Florida strains. We are not aware of other strains of F. oxysporum from roselle in other international culture collections. Roselle seedlings were inoculated with O-2424 and O-2425 by placing a mycelial plug (5 mm2, PDA) over a small incision 5 cm above the soil line and then covering the site with Parafilm. Parafilm was removed after 1 week, and plants were incubated under ambient temperatures (20 to 32°C) in full sun for an additional 5 weeks (experiment 1) or 7 weeks (experiment 2). Compared with mock-inoculated (wound + Parafilm) control plants, both O-2424 and O-2425 caused significant (P < 0.05) vascular disease (linear extension of discolored xylem above and below wound site) and wilting (subjective 1 to 5 scale); both isolates were recovered from affected plants. F. oxysporum-induced wilt of roselle has been reported in Nigeria (1) and Malaysia (4) where the subspecific epithet f. sp. rosellae was used for the pathogen. We are not aware of reports of this disease elsewhere. To our knowledge, this is the first report of F. oxysporum-induced wilt of roselle in the United States. Research to determine whether the closely related strains in clade 3 of the FOC are generalist plant pathogens (i.e., not formae speciales) is warranted. References: (1) N. A. Amusa et al. Plant Pathol. J. 4:122, 2005. (2) J. Morton. Pages 81-286 in: Fruits of Warm Climates. Creative Resource Systems, Inc., Winterville, NC, 1987. (3) K. O'Donnell et al. J. Clin. Microbiol. 42:5109, 2004. (4) K. H. Ooi and B. Salleh. Biotropia 12:31, 1999.
  2. Aoki T, Smith JA, Kasson MT, Freeman S, Geiser DM, Geering ADW, et al.
    Mycologia, 2019 09 27;111(6):919-935.
    PMID: 31560603 DOI: 10.1080/00275514.2019.1647074
    The Ambrosia Fusarium Clade (AFC) comprises at least 16 genealogically exclusive species-level lineages within clade 3 of the Fusarium solani species complex (FSSC). These fungi are either known or predicted to be farmed by Asian Euwallacea ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in the tribe Xyleborini as a source of nutrition. To date, only 4 of the 16 AFC lineages have been described formally. In the absence of Latin binomials, an ad hoc nomenclature was developed to distinguish the 16 species lineages as AF-1 to AF-16. Herein, Fusarium species AF-3, AF-5, and AF-7 were formally described as F. floridanum, F. tuaranense, and F. obliquiseptatum, respectively. Fusarium floridanum farmed by E. interjectus on box elder (Acer negundo) in Gainesville, Florida, was distinguished morphologically by the production of sporodochial conidia that were highly variable in size and shape together with greenish-pigmented chlamydospores. Fusarium tuaranense was isolated from a beetle-damaged Paŕa rubber tree (Hevea brasiliense) in North Borneo, Malaysia, and was diagnosed by production of the smallest sporodochial conidia of any species within the AFC. Lastly, F. obliquiseptatum was farmed by an unnamed ambrosia beetle designated Euwallacea sp. 3 (E. fornicatus species complex) on avocado (Persea americana) in Queensland, Australia. It uniquely produces some clavate sporodochial conidia with oblique septa. Maximum likelihood analysis of a multilocus data set resolved these three novel AFC taxa as phylogenetically distinct species based on genealogical concordance. Particularly where introduced into exotic environments, these exotic mutualists pose a serious threat to the avocado industry, native forests, and urban landscapes in diverse regions throughout the world.
  3. Geiser DM, Al-Hatmi AMS, Aoki T, Arie T, Balmas V, Barnes I, et al.
    Phytopathology, 2021 Jul;111(7):1064-1079.
    PMID: 33200960 DOI: 10.1094/PHYTO-08-20-0330-LE
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links