MATERIALS AND METHODS: The addressed focused question was "Is SLT effective in the management of OPL?" Databases (MEDLINE via PubMed; EMBASE; Cochrane Central Register of Controlled Trials and Cochrane Oral Health Group Trials Register databases) were searched from 1970 up to and including February 2017.
RESULTS: Ten studies were included. The reported number of OPL ranged between 8 and 140. Oral pigmented sites included, gingiva, buccal and labial mucosa, alveolar mucosa and lips. Lasers used in the studies included Q-switched alexandrite, Neodymium-doped yttrium aluminium garnet, diode, Erbium: yttrium aluminium garnet and carbon dioxide laser. Laser wavelength, power output and number of irradiations were 635-10,600nm, 1-10W and 1 to 9 times, respectively. The follow up period ranged from 6 to 24months. All studies reported SLT to be effective in the treatment of OPL. In five studies, recurrence of OPL occurred which ranged from 21.4% to 45%.
CONCLUSIONS: Lasers are effective in the management of OPL including physiologic gingival pigmentation, smokers' melanosis and pigmentation in Laugier-Hunziker syndrome. Different laser types (CO2, Er:YAG and Diode) showed comparable outcomes in the treatment of OPL.
PURPOSE: In the present study, we examined the clinical and radiographic peri-implant parameters and levels of AGEs among different glycemic levels in diabetic patients and assessed whether the levels of AGEs correlate with clinical peri-implant parameters.
MATERIALS AND METHODS: Ninety-three patients who participated in this study were divided into four groups; Group-1: HbA1c 6.1%-8%; Group-2: HbA1c 8.1%-10%; Group-3: HbA1c > 10%; Group-4: non-diabetic individuals with HbA1c .05). Mean levels of AGEs in PISF were significantly higher in relation to higher levels of HbA1c levels. Significant positive correlations were found between AGEs and PD (P = .0221) and CBL (P = .0425); and significant negative correlation was found for PI (P = .0376) in patients with HbA1c levels >10%, respectively.
CONCLUSIONS: Clinical and radiographic peri-implant parameters were poor and levels of AGEs were significantly high in patients with high glycemic levels. These findings suggest that AGEs may be considered as potential marker of inflammation in diabetic individuals with peri-implantitis.
METHODS: A total of 71 eligible subjects aged 50 to 55 years from Gombak and Kuala Lumpur, Malaysia, were divided into three groups and supplemented with placebo (n=23), α-tocopherol (n=24) or tocotrienol-rich fraction (n=24). Blood samples were collected at baseline and at 3 and 6 months of supplementation for microarray analysis.
RESULTS: The number of genes altered by α-tocopherol was higher after 6 months (1,410) than after 3 months (273) of supplementation. α-Tocopherol altered the expression of more genes in males (952) than in females (731). Similarly, tocotrienol-rich fraction modulated the expression of more genes after 6 months (1,084) than after 3 months (596) and affected more genes in males (899) than in females (781). α-Tocopherol supplementation modulated pathways involving the response to stress and stimuli, the immune response, the response to hypoxia and bacteria, the metabolism of toxins and xenobiotics, mitosis, and synaptic transmission as well as activated the mitogen-activated protein kinase and complement pathways after 6 months. However, tocotrienol-rich fraction supplementation affected pathways such as the signal transduction, apoptosis, nuclear factor kappa B kinase, cascade extracellular signal-regulated kinase-1 and extracellular signal-regulated kinase-2, immune response, response to drug, cell adhesion, multicellular organismal development and G protein signaling pathways.
CONCLUSION: Supplementation with either α-tocopherol or tocotrienol-rich fraction affected the immune and drug response and the cell adhesion and signal transduction pathways but modulated other pathways differently after 6 months of supplementation, with sex-specific responses.