Displaying all 3 publications

Abstract:
Sort:
  1. Xiang Ping MK, Zhi HW, Aziz NS, Hadri NA, Ghazalli NF, Yusop N
    J Taibah Univ Med Sci, 2023 Feb;18(1):104-116.
    PMID: 36398016 DOI: 10.1016/j.jtumed.2022.08.009
    Hydrogels have potential uses in various biological applications because of their unique characteristics. Fine-tuning of agarose-alginate (Ag-Al) hydrogel components improves the mechanical characteristics of the final construct for cell encapsulation and transportation. Formulation of suitable dissolving agents may enable the release of encapsulated cells for further applications in laboratory or clinical settings.

    Objectives: This study aimed at optimizing the composition of Ag-Al hydrogel beads and their dissolving agents for potential use in the transportation of stem cells.

    Methods: Various agarose, alginate, and CaCl2 concentrations were tested to construct hydrogel beads. The degradation rate and swelling ratio of each hydrogel sample were recorded. The optimized Ag-Al hydrogels were used for encapsulation of stem cells from human exfoliated deciduous teeth (SHED). Optimization of dissolving agents was performed and tested with the hydrogel-encapsulated cells. Data were statistically analyzed in SPSS.

    Results: The selected concentration of Ag-Al hydrogels components was successfully demonstrated to encapsulate SHED, which remained viable until day 10. An average of 2 min was required for degradation of the hydrogel with encapsulated SHED by a dissolving agent consisting of 100 mM sodium citrate and 100 mM EDTA. The cell viability of SHED released after day 10 of encapsulation was 29.1%.

    Conclusion: Alteration of Ag-Al components has considerable influence on the mechanical properties of the constructed hydrogel. The feasibility of performing the optimized cell encapsulation protocol, as well as the dissolving step, may provide a useful guide for the transportation of viable cells between countries, for medical research.

  2. Abu Bakar N, Mydin RBSMN, Yusop N, Matmin J, Ghazalli NF
    J Tissue Viability, 2024 Feb;33(1):104-115.
    PMID: 38092620 DOI: 10.1016/j.jtv.2023.11.001
    Complexity of the entire body precludes an accurate assessment of the specific contributions of tissues or cells during the healing process, which might be expensive and time consuming. Because of this, controlling the wound's size, depth, and dimensions may be challenging, and there is not yet an efficient and reliable chronic wound model representation. Furthermore, given the inherent challenges associated with conducting non-invasive in vivo investigations, it becomes peremptory to explore alternative methodologies for studying wound healing. In this context, biologically-realistic mathematical and computational models emerge as a valuable framework that can effectively address this need. Therefore, it might improve our approach to understanding the process at its core. This article will examines all facets of wound healing, including the kinds, pathways, and most current developments in wound treatment worldwide, particularly in silico modelling utilizing both mathematical and structure-based modelling techniques. It may be helpful to identify the crucial traits through the feedback loop of computer models and experimental investigations in order to build innovative therapies to cure wounds. Hence the effectiveness of personalised medicine and more targeted therapy in the healing of wounds may be enhanced by this interdisciplinary expertise.
  3. Thambirajoo M, Maarof M, Lokanathan Y, Katas H, Ghazalli NF, Tabata Y, et al.
    Antibiotics (Basel), 2021 Nov 02;10(11).
    PMID: 34827276 DOI: 10.3390/antibiotics10111338
    Nanotechnology has become an emerging technology in the medical field and is widely applicable for various clinical applications. The potential use of nanoparticles as antimicrobial agents is greatly explored and taken into consideration as alternative methods to overcome the challenges faced by healthcare workers and patients in preventing infections caused by pathogenic microorganisms. Among microorganisms, bacterial infections remain a major hurdle and are responsible for high morbidity and mortality globally, especially involving those with medical conditions and elderly populations. Over time, these groups are more vulnerable to developing resistance to antibiotics, as bacterial biofilms are difficult to destroy or eliminate via antibiotics; thus, treatment becomes unsuccessful or ineffective. Mostly, bacterial biofilms and other microbes can be found on medical devices and wounds where they disperse their contents which cause infections. To inhibit biofilm formations and overcome antibiotic resistance, antimicrobial-loaded nanoparticles alone or combined with other substances could enhance the bactericidal activity of nanomaterials. This includes killing the pathogens effectively without harming other cells or causing any adverse effects to living cells. This review summarises the mechanisms of actions employed by the different types of nanoparticles which counteract infectious agents in reducing biofilm formation and improve antibiotic therapy for clinical usage.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links