METHODS: We formulated body capacitive index (BCI), C(BMI) (capacitance × height(2)/weight), body resistive index (BRI), R(BMI) (resistance × weight/height(2)), and CH(2) (capacitance × height(2)). We also studied H(2)/R, R/H, and reactance of a capacitor/height (X(C) /H). There are 3 components in this study design: (1) establishment of normal values in a control Malaysian population, (2) comparison of these with a CAPD population, and (3) prediction of survival within a CAPD population. We initially performed a BIA study in 206 female and 116 male healthy volunteers, followed by a prospective study in a cohort of 128 CAPD patients [47 with diabetes mellitus (DM), 81 non-DM; 59 males, 69 females] for at least 2 years. All the parameters during enrolment, including BIA, serum albumin, peritoneal equilibrium test, age, and DM status, were analyzed. Outcome measurement was survival.
RESULTS: In healthy volunteers, both genders had the same BCI (2.0 nF kg/m(2)). On the contrary, female normal subjects had higher BRI than male normal subjects (median 15 642 vs 13242 Ω kg/m(2), p < 0.001) due to higher fat percentage (35.4% ± 0.4% vs 28.0% ± 0.6%, p < 0.001), resulting in a lower phase angle (mean 5.82 ± 0.04 vs 6.86 ± 0.07 degrees, p < 0.001). Logistic regression showed that BCI was the best risk indicator in 128 CAPD patients versus 322 normal subjects. In age- and body mass index (BMI)-matched head-to-head comparison, BCI had the highest χ(2) value (χ(2) = 102.63), followed by CH(2) (or H(2)/X(C); χ(2) = 81.00), BRI (χ(2) = 20.54), and X(C)/H (χ(2) = 20.48), with p value < 0.001 for these parameters. In comparison, phase angle (χ(2) = 11.42), R/H (χ(2) = 7.19), and H(2)/R (χ(2) = 5.69) had lower χ(2) values. 35 (27.3%) patients died during the study period. Univariate analysis adjusted for DM status and serum albumin level demonstrated that non-surviving patients had significantly higher CH(2) (245 vs 169 nF m(2), p < 0.001) and BCI (4.0 vs 2.9 nF m(2)/kg, p = 0.005) than patients that survived. CH(2) was the best predictor for all-cause mortality in Cox regression analysis, followed by BCI, phase angle, and X(C)/H.
CONCLUSION: Measures that normalize, such as BCI and CH(2), have higher risk discrimination and survival prediction ability than measures that do not normalize, such as phase angle. Unlike phase angle, measurement of BCI overcomes the gender effect. In this study, the best risk indicator for CAPD patients versus the general population is BCI, reflecting deficit in nutritional concentration, while CH(2) reflects total nutritional deficit and thus is the major risk indicator for survival of CAPD patients.
METHODS: We conducted an 8-week randomized crossover study on 16 Hemodialysis machines to compare CCS versus PPC. Performance is assessed by solute concentrations while safety is assessed by microbial count, endotoxin level and adverse event reporting.
RESULTS: Microbial counts and endotoxin levels were monitored on 48 occasions during the 8-week study for the CCS arm of the study. The levels were all below the action limit during the study. No patient reported any adverse events. Dialysate Sodium, Chloride and Bicarbonate concentrations were measured on a total of 128 occasions for each arm of the study. The relative deviations of Sodium, Chloride and Bicarbonate concentration were within ±5% of their nominal values for both. The 95% Confidence Intervals for the ratio of the mean solute concentrations on the CCS to PPC lie within the tolerance limit of ±5%.
CONCLUSION: Modern CCS is bacteriologically safe and its performance statistically equivalent to PPC.