Displaying all 4 publications

Abstract:
Sort:
  1. Chen G, Zhou W, Guan D, Sunarso J, Zhu Y, Hu X, et al.
    Sci Adv, 2017 06;3(6):e1603206.
    PMID: 28691090 DOI: 10.1126/sciadv.1603206
    Perovskite oxides exhibit potential for use as electrocatalysts in the oxygen evolution reaction (OER). However, their low specific surface area is the main obstacle to realizing a high mass-specific activity that is required to be competitive against the state-of-the-art precious metal-based catalysts. We report the enhanced performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) for the OER with intrinsic activity that is significantly higher than that of the benchmark IrO2, and this result was achieved via fabrication of an amorphous BSCF nanofilm on a surface-oxidized nickel substrate by magnetron sputtering. The surface nickel oxide layer of the Ni substrate and the thickness of the BSCF film were further used to tune the intrinsic OER activity and stability of the BSCF catalyst by optimizing the electronic configuration of the transition metal cations in BSCF via the interaction between the nanofilm and the surface nickel oxide, which enables up to 315-fold enhanced mass-specific activity compared to the crystalline BSCF bulk phase. Moreover, the amorphous BSCF-Ni foam anode coupled with the Pt-Ni foam cathode demonstrated an attractive small overpotential of 0.34 V at 10 mA cm-2 for water electrolysis, with a BSCF loading as low as 154.8 μg cm-2.
  2. Shen Y, Zhu Y, Sunarso J, Guan D, Liu B, Liu H, et al.
    Chemistry, 2018 May 11;24(27):6950-6957.
    PMID: 29411451 DOI: 10.1002/chem.201705675
    Because of their structural and compositional flexibility, perovskite oxides represent an attractive alternative electrocatalyst class to precious metals for the oxygen reduction reaction (ORR); an important reaction in fuel cells and metal-air batteries. Partial replacement of the original metal cation with another cation, namely, doping, can be used to tailor the ORR activity of perovskite, for which a metal has been exclusively used as the dopant component in the past. Herein, phosphorus is proposed as a non-metal dopant for the cation site to develop a new perovskite family with the formula of La0.8 Sr0.2 Mn1-x Px O3-δ (x=0, 0.02, 0.05, and 0.1; denoted as LSM, LSMP0.02, LSMP0.05, and LSMP0.1, respectively). Powder XRD patterns reveal that the solubility of phosphorus in the perovskite structure is around 0.05. Rotating ring-disk electrode experiments in the form of linear-sweep voltammetry scans demonstrated the best ORR performance for LSMP0.05, and also revealed close to a four-electron ORR pathway for all four compositions. A chronoamperometric test (9000 s) and 500 cycle accelerated durability test demonstrated higher durability for LSMP0.05 relative to that of LSM and the commercial 20 wt % Pt/C catalyst. The higher ORR activity for LSMP0.05 is attributed to the optimised average valence of Mn, as evidenced by combined X-ray photoelectron spectroscopy and soft X-ray absorption spectroscopy data. Doping phosphorus into perovskites is an effective way to develop high-performance electrocatalysts for ORR.
  3. Sun J, Zhang H, Tan Q, Zhou H, Guan D, Zhang X, et al.
    Sci Rep, 2018 07 02;8(1):9976.
    PMID: 29967414 DOI: 10.1038/s41598-018-28349-2
    In 2015, an unexpected multiple outbreak of dengue occurred in Guangdong, China. In total, 1,699 cases were reported, of which 1,627 cases were verified to have DENV infections by nucleic acid or NS1 protein, including 44 DENV-1, 1126 DENV-2, 18 DENV-3 and 6 DENV-4, and the other cases were confirmed by NS1 ELISA. Phylogenetic analyses of DENV-1 isolates identified two genotypes (I and V). The predominant DENV-2 outbreak isolates were the Cosmopolitan genotypes, which likely originated from Malaysia. The DENV-3 isolates were assigned into genotype I and genotype III. All 6 DENV-4 isolates from imported cases were likely originally from Cambodia, Thailand and the Philippines. The entomological surveillance showed a moderate risk for the BI index in Chaozhou and Foshan and a low risk in Guangzhou. The imported cases were mostly detected in Guangzhou and Foshan. Surprisingly, the most serious outbreak occurred in Chaozhou, but not in Guangzhou or Foshan. A combined analyses demonstrated the multiple geographical origins of this outbreak, and highlight the detection of suspected cases after the alerting of imported cases, early implementation of control policies and reinforce the vector surveillance strategies were the key points in the chain of prevention and control of dengue epidemics.
  4. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, et al.
    Nature, 2021 Apr;592(7856):737-746.
    PMID: 33911273 DOI: 10.1038/s41586-021-03451-0
    High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1-4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links