Melioidosis is a neglected tropical disease caused by Burkholderia pseudomallei, endemic to Southeast Asia and Northern Australia. Despite its increasing global public health and clinical significance, the molecular epidemiology of melioidosis and genetic diversity of B. pseudomallei in Cambodia remains poorly understood. This study aims to elucidate the genetic diversity and antibiotic susceptibility profiles of B. pseudomallei isolates responsible for melioidosis in humans. For this purpose, 14 clinical isolates cryopreserved at the Medical Biology Laboratory at Institut Pasteur du Cambodge from 2016 to 2020 were subjected to antimicrobial susceptibility testing and Multilocus Sequence Typing (MLST). Phenotypic testing revealed that 92.86% (13/14) of the isolates were sensitive to all tested antibiotics, while one isolate exhibited resistance to trimethoprim-sulfamethoxazole. MLST analysis resolved our isolates into 14 unique Sequence Types (STs), including 10 previously documented in Southeast Asia. Notably, ST1858, ST2064, ST2065, and ST2066 were identified as novel STs, while ST54, ST99, ST211, and ST1359 were reported in Cambodia for the first time in this study. Comparing our MLST data with available sequences on PubMLST (n = 165), our study unveiled a high genetic diversity of B. pseudomallei in Cambodia. The identified STs were closely associated with isolates from other Southeast Asian countries, particularly Thailand, Vietnam, and Malaysia. In conclusion, this study provided insight into the genetic diversity among B. pseudomallei clinical isolates in Cambodia and their close genetic association with Southeast Asian isolates. To further our understanding, a One Health approach, incorporating human, environmental (mainly soil), and animal compartments, is essential to decipher the epidemiology of B. pseudomallei in Cambodia.
The human population history in Southeast Asia was shaped by numerous migrations and population expansions. Their reconstruction based on archaeological, linguistic or human genetic data is often hampered by the limited number of informative polymorphisms in classical human genetic markers, such as the hypervariable regions of the mitochondrial DNA. Here, we analyse housekeeping gene sequences of the human stomach bacterium Helicobacter pylori from various countries in Southeast Asia and we provide evidence that H. pylori accompanied at least three ancient human migrations into this area: i) a migration from India introducing hpEurope bacteria into Thailand, Cambodia and Malaysia; ii) a migration of the ancestors of Austro-Asiatic speaking people into Vietnam and Cambodia carrying hspEAsia bacteria; and iii) a migration of the ancestors of the Thai people from Southern China into Thailand carrying H. pylori of population hpAsia2. Moreover, the H. pylori sequences reflect iv) the migrations of Chinese to Thailand and Malaysia within the last 200 years spreading hspEasia strains, and v) migrations of Indians to Malaysia within the last 200 years distributing both hpAsia2 and hpEurope bacteria. The distribution of the bacterial populations seems to strongly influence the incidence of gastric cancer as countries with predominantly hspEAsia isolates exhibit a high incidence of gastric cancer while the incidence is low in countries with a high proportion of hpAsia2 or hpEurope strains. In the future, the host range expansion of hpEurope strains among Asian populations, combined with human motility, may have a significant impact on gastric cancer incidence in Asia.