Displaying all 2 publications

Abstract:
Sort:
  1. Chui KT, Gupta BB, Liu RW, Zhang X, Vasant P, Thomas JJ
    Sensors (Basel), 2021 Sep 25;21(19).
    PMID: 34640732 DOI: 10.3390/s21196412
    Road traffic accidents have been listed in the top 10 global causes of death for many decades. Traditional measures such as education and legislation have contributed to limited improvements in terms of reducing accidents due to people driving in undesirable statuses, such as when suffering from stress or drowsiness. Attention is drawn to predicting drivers' future status so that precautions can be taken in advance as effective preventative measures. Common prediction algorithms include recurrent neural networks (RNNs), gated recurrent units (GRUs), and long short-term memory (LSTM) networks. To benefit from the advantages of each algorithm, nondominated sorting genetic algorithm-III (NSGA-III) can be applied to merge the three algorithms. This is named NSGA-III-optimized RNN-GRU-LSTM. An analysis can be made to compare the proposed prediction algorithm with the individual RNN, GRU, and LSTM algorithms. Our proposed model improves the overall accuracy by 11.2-13.6% and 10.2-12.2% in driver stress prediction and driver drowsiness prediction, respectively. Likewise, it improves the overall accuracy by 6.9-12.7% and 6.9-8.9%, respectively, compared with boosting learning with multiple RNNs, multiple GRUs, and multiple LSTMs algorithms. Compared with existing works, this proposal offers to enhance performance by taking some key factors into account-namely, using a real-world driving dataset, a greater sample size, hybrid algorithms, and cross-validation. Future research directions have been suggested for further exploration and performance enhancement.
  2. Band SS, Ameri R, Qasem SN, Mehdizadeh S, Gupta BB, Pai HT, et al.
    Heliyon, 2025 Jan 15;11(1):e41026.
    PMID: 39801963 DOI: 10.1016/j.heliyon.2024.e41026
    Global adoption of wind energy continues to increase, while improving the efficiency of turbine settings requires reliable wind speed (WS) models. The latest models rely on artificial intelligence (AI) optimizations which constructs tests on a range of novel hybrid models to examine the reliability. Gradient Boosting (GB), Random Forest (RF), and Long Short-Term Memory (LSTM) are used in new combinations for data pre-processing. A Time Varying Filter-based Empirical Mode Decomposition (TVFEMD) model is coupled with the GB and LSTM standalone models, to create TVFEMD-GB and TVFEMD-LSTM hybrids, which are run in competition with each other. Eventually, a preferred hybrid form is established, simultaneous hybridization of TVFEMD with GB and LSTM. This study is the first to hybridize these fundamental systems, and create a TVFEMD-GB-LSTM model that can forecast WS. This study finds that the novel hybrid models exhibit superior performance to standalone GB and LSTM models, opening the pathway to alternative WS prediction techniques.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links