Displaying all 7 publications

Abstract:
Sort:
  1. Haghvirdizadeh P, Sadat Haerian M, Haghvirdizadeh P, Sadat Haerian B
    Gene, 2014 07 25;545(2):198-204.
    PMID: 24768178 DOI: 10.1016/j.gene.2014.04.040
    Diabetes mellitus (DM) is a major health problem worldwide and it will rapidly increase. This disease is characterized by hyperglycemia caused by defects in insulin secretion, insulin action or both. DM has three types: T1DM, T2M and gestational DM (GDM), of them T2DM is more frequent. Multiple genes and their interactions are involved in insulin secretion pathway. Sulfonylurea receptor encoded by ABCC8 gene, together with inward-rectifier potassium ion channel (Kir6.2) regulates insulin secretion by ATP-sensitive K(+) (KATP) channel located in the plasma membranes. Disruption of these molecules by different mutations is responsible for risk of DM. Several single nucleotide polymorphisms (SNPs) of ABCC8 gene and their interaction are involved in pathogenicity of DM. This review summarizes the current evidence of contribution of ABC8 genetic variants to the development of DM.
  2. Haghvirdizadeh P, Sadat Haerian M, Haghvirdizadeh P, Sadat Haerian B
    Gene, 2020 07 20;748:144687.
    PMID: 32386973 DOI: 10.1016/j.gene.2020.144687
  3. Haghvirdizadeh P, Haerian MS, Haghvirdizadeh P, Haerian BS
    Gene, 2020 06 20;744:144686.
    PMID: 32345518 DOI: 10.1016/j.gene.2020.144686
  4. Haghvirdizadeh P, Mohamed Z, Abdullah NA, Haghvirdizadeh P, Haerian MS, Haerian BS
    J Diabetes Res, 2015;2015:908152.
    PMID: 26448950 DOI: 10.1155/2015/908152
    Diabetes mellitus (DM) is a major worldwide health problem and its prevalence has been rapidly increasing in the last century. It is caused by defects in insulin secretion or insulin action or both, leading to hyperglycemia. Of the various types of DM, type 2 occurs most frequently. Multiple genes and their interactions are involved in the insulin secretion pathway. Insulin secretion is mediated through the ATP-sensitive potassium (KATP) channel in pancreatic beta cells. This channel is a heteromeric protein, composed of four inward-rectifier potassium ion channel (Kir6.2) tetramers, which form the pore of the KATP channel, as well as sulfonylurea receptor 1 subunits surrounding the pore. Kir6.2 is encoded by the potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene, a member of the potassium channel genes. Numerous studies have reported the involvement of single nucleotide polymorphisms of the KCNJ11 gene and their interactions in the susceptibility to DM. This review discusses the current evidence for the contribution of common KCNJ11 genetic variants to the development of DM. Future studies should concentrate on understanding the exact role played by these risk variants in the development of DM.
  5. Haghvirdizadeh P, Ramachandran V, Etemad A, Heidari F, Ghodsian N, Bin Ismail N, et al.
    J Diabetes Res, 2015;2015:289846.
    PMID: 26451383 DOI: 10.1155/2015/289846
    BACKGROUND: Type 2 diabetes mellitus (T2DM) is a complex polygenic disorder characterized by impaired insulin resistance, insulin secretion, and dysregulation of lipid and protein metabolism with environmental and genetic factors. ATP-binding cassette transporter A1 (ABCA1) gene polymorphisms are reported as the one of the genetic risk factors for T2DM in various populations with conflicting results. This study was conducted based on PCR-HRM to determine the frequency of ABCA1 gene by rs2230806 (R219K), rs1800977 (C69T), and rs9282541 (R230C) polymorphisms Malaysian subjects.

    METHODS: A total of 164 T2DM and 165 controls were recruited and their genotypes for ABCA1 gene polymorphisms were determined based on the real time high resolution melting analysis.

    RESULTS: There was a significant difference between the subjects in terms of age, BMI, FPG, HbA1c, HDL, LDL, and TG (P < 0.05). There was a significant association between HOM of R219K (P = 0.005), among Malaysian subjects; moreover, allele frequency revealed the significant difference in A allele of R219K (P = 0.003). But, there was no significant difference in genotypic and allelic frequencies of C69T and R230C polymorphism.

    CONCLUSION: R219K polymorphism of ABCA1 gene can be considered as a genetic risk factor for T2DM subjects among Malaysians.

  6. Ghodsian N, Ismail P, Ahmadloo S, Heidari F, Haghvirdizadeh P, Ataollahi Eshkoor S, et al.
    J Diabetes Res, 2016;2016:8219543.
    PMID: 27314050 DOI: 10.1155/2016/8219543
    With-no-lysine (K) Kinase-4 (WNK4) consisted of unique serine and threonine protein kinases, genetically associated with an autosomal dominant form of hypertension. Argumentative consequences have lately arisen on the association of specific single nucleotide polymorphisms of WNK4 gene and essential hypertension (EHT). The aim of this study was to determine the association of Ala589Ser polymorphism of WNK4 gene with essential hypertensive patients in Malaysia. WNK4 gene polymorphism was specified utilizing mutagenically separated polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) method in 320 subjects including 163 cases and 157 controls. Close relation between Ala589Ser polymorphism and elevated systolic and diastolic blood pressure (SBP and DBP) was recognized. Sociodemographic factors including body mass index (BMI), age, the level of fasting blood sugar (FBS), low density lipoprotein (LDL), and triglyceride (TG) in the cases and healthy subjects exhibited strong differences (p < 0.05). The distribution of allele frequency and genotype of WNK4 gene Ala589Ser polymorphism showed significant differences (p < 0.05) between EHT subjects with or without type 2 diabetes mellitus (T2DM) and normotensive subjects, statistically. The WNK4 gene variation influences significantly blood pressure increase. Ala589Ser probably has effects on the enzymic activity leading to enhanced predisposition to the disorder.
  7. Ghodsian N, Akhlaghi M, Ramachandran V, Heidari F, Haghvirdizadeh P, Eshkoor SA, et al.
    Genet. Mol. Res., 2015 Dec 29;14(4):18974-9.
    PMID: 26782547 DOI: 10.4238/2015.December.29.4
    This study aims to investigate the effects of tumor necrosis factor alpha (TNF-α) G308A gene polymorphism on essential hypertension (EHT) with or without type 2 diabetes mellitus (T2DM). The project was conducted on buccal epithelial and blood cells for case and control patients, respectively. Epithelial cells were obtained from the inner part of the cheeks. Techniques including DNA extraction, polymerase chain reaction (PCR), and restriction fragment length polymorphism (RFLP) were utilized to assess biomarkers of DNA damage. Our results demonstrated significant differences between wild and mutated genotypes among EHT patients without T2DM. We also found a significant association between wild and mutated allele frequencies in EHT patients (P < 0.05). Clinical characteristics between the groups (EHT with or without T2DM and controls) showed statistically significant association (P < 0.05). Overall, we show that G308A polymorphism of the TNF-αgene may be a significant genetic risk factor for EHT without T2DM patients in Malaysia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links