Displaying all 5 publications

Abstract:
Sort:
  1. Han F, Hessen AS, Amari A, Elboughdiri N, Zahmatkesh S
    Environ Res, 2024 Mar 15;245:117972.
    PMID: 38141913 DOI: 10.1016/j.envres.2023.117972
    Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu2+ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R2 values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu2+ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min.
  2. Ng CC, Boyce AN, Abas MR, Mahmood NZ, Han F
    Environ Monit Assess, 2019 Jun 14;191(7):434.
    PMID: 31201562 DOI: 10.1007/s10661-019-7573-2
    Over the years, ethylene-diamine-tetra-acetate (EDTA) has been widely used for many purposes. However, there are inadequate phytoassessment studies conducted using EDTA in Vetiver grass. Hence, this study evaluates the phytoassessment (growth performance, accumulation trends, and proficiency of metal uptake) of Vetiver grass, Vetiveria zizanioides (Linn.) Nash in both single and mixed heavy metal (Cd, Pb, Cu, and Zn)-disodium EDTA-enhanced contaminated soil. The plant growth, metal accumulation, and overall efficiency of metal uptake by different plant parts (lower root, upper root, lower tiller, and upper tiller) were thoroughly examined. The relative growth performance, metal tolerance, and phytoassessment of heavy metal in roots and tillers of Vetiver grass were examined. Metals in plants were measured using the flame atomic absorption spectrometry (F-AAS) after acid digestion. The root-tiller (R/T) ratio, biological concentration factor (BCF), biological accumulation coefficient (BAC), tolerance index (TI), translocation factor (TF), and metal uptake efficacy were used to estimate the potential of metal accumulation and translocation in Vetiver grass. All accumulation of heavy metals were significantly higher (p < 0.05) in both lower and upper roots and tillers of Vetiver grass for Cd + Pb + Cu + Zn + EDTA treatments as compared with the control. The single Zn + EDTA treatment accumulated the highest overall total amount of Zn (8068 ± 407 mg/kg) while the highest accumulation for Cu (1977 ± 293 mg/kg) and Pb (1096 ± 75 mg/kg) were recorded in the mixed Cd + Pb + Cu + Zn + EDTA treatment, respectively. Generally, the overall heavy metal accumulation trends of Vetiver grass were in the order of Zn > Cu > Pb > Cd for all treatments. Furthermore, both upper roots and tillers of Vetiver grass recorded high tendency of accumulation for appreciably greater amounts of all heavy metals, regardless of single and/or mixed metal treatments. Thus, Vetiver grass can be recommended as a potential phytoextractor for all types of heavy metals, whereby its tillers will act as the sink for heavy metal accumulation in the presence of EDTA for all treatments.
  3. Zhao Y, Han F, Guo L, Zhang J, Zhang H, Abdelaziz IIM, et al.
    Waste Manag, 2021 Dec;136:184-194.
    PMID: 34689097 DOI: 10.1016/j.wasman.2021.10.018
    Postconsumer polyethylene terephthalate (PET) has potential applications in many areas of manufacturing, but contamination by hazardous polyvinyl chloride (PVC) in common waste streams can reduce its recyclable value. Separating collected PET-PVC mixtures before recycling remains very challenging because of the similar physicochemical properties of PET and PVC. Herein, we describe a novel flotation process with corona modification pretreatment to facilitate the separation of PET-PVC mixtures. Through water contact angle, surface free energy, X-ray photoelectron and FT-IR characterization, we found that polar hydroxyl groups can be more easily introduced on the PVC surface than on the PET surface induced by corona modification. This selective wetting can suppress the floatability of PVC, leading to the separation of PET as floating product. A reliable mechanism including two different hydrogen-abstraction pathways was established. Response surface methodology consisting of Plackett-Burman and Box-Behnken designs was adopted for optimization of the combined process, and control parameters were solved based on high-quality prediction models, with fitting from significant variables and interactions. For physical or chemical circulation strategies with PET purity prioritization, the validated purity of the product reached 96.05% at a 626 W corona power, 5.42 m/min passing speed, 24.78 mg/L frother concentration and 286 L/h air flow rate. For the energy recuperation strategy with PET recovery prioritization, the factual recovery reached 98.08% under a 601 W corona power, 6.04 m/min passing speed, 27.55 mg/L frother concentration and 184 L/h air flow rate. The current work provides technological insights into the cleaner disposal of waste plastics.
  4. Han F, Gulam MY, Zheng Y, Zulhaimi NS, Sia WR, He D, et al.
    Front Immunol, 2022;13:985385.
    PMID: 36341446 DOI: 10.3389/fimmu.2022.985385
    MAIT cells are persistently depleted and functionally exhausted in HIV-1-infected patients despite long-term combination antiretroviral therapy (cART). IL-7 treatment supports MAIT cell reconstitution in vivo HIV-1-infected individuals and rescues their functionality in vitro. Single-nucleotide polymorphisms (SNPs) of the IL-7RA gene modulate the levels of soluble(s)IL-7Rα (sCD127) levels and influence bioavailability of circulating IL-7. Here we evaluate the potential influence of IL-7RA polymorphisms on MAIT cell numbers and function in healthy control (HC) subjects and HIV-1-infected individuals on long-term cART. Our findings indicate that IL-7RA haplotype 2 (H2*T), defined as T-allele carriers at the tagging SNP rs6897932, affects the size of the peripheral blood MAIT cell pool, as well as their production of cytokines and cytolytic effector proteins in response to bacterial stimulation. H2*T carriers had lower sIL-7Rα levels and higher MAIT cell frequency with enhanced functionality linked to higher expression of MAIT cell-associated transcription factors. Despite an average of 7 years on suppressive cART, MAIT cell levels and function in HIV-1-infected individuals were still significantly lower than those of HC. Notably, we observed a significant correlation between MAIT cell levels and cART duration only in HIV-1-infected individuals carrying IL-7RA haplotype 2. Interestingly, treatment with sIL-7Rα in vitro suppressed IL-7-dependent MAIT cell proliferation and function following cognate stimulations. These observations suggest that sIL-7Rα levels may influence MAIT cell numbers and function in vivo by limiting IL-7 bioavailability to MAIT cells. Collectively, these observations suggest that IL-7RA polymorphisms may play a significant role in MAIT cell biology and influence MAIT cells recovery in HIV-1 infection. The potential links between IL7RA polymorphisms, MAIT cell immunobiology, and HIV-1 infection warrant further studies going forward.
  5. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links