Displaying all 7 publications

Abstract:
Sort:
  1. Santiagoo, Ragunathan, Hanafi Ismail, Kamarudin Hussin
    MyJurnal
    The effect of polypropylene maleic anhydride (PPMAH) on tensile properties and morphology of polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr)/ rice husk powder (RHP) composites has been studied. The composites were prepared through melt mixing at 180ºC for 9 minutes using 50 rpm rotor speed. The specimens were analyzed using different techniques, namely tensile test and Scanning Electron Microscopy (SEM). The results obtained showed that the tensile strength and Young’s modulus of the modified composites were increased, while the elongation at break showed the opposite trend as compared with the unmodified composites. The morphology results support the tensile properties and these indicated a better interaction between the filler and matrix with the presence of PPMAH as a compatibilizer.
  2. Hanafi Ismail, Rohani Abdul Majid, Razaina Mat Taib
    MyJurnal
    Linear density polyethylene (LDPE)/thermoplastic sago starch (TPSS), blended with and without the addition of compatibilizer [Polyethylene-grafted-Maleic Anhydride, (PE-g-MA)] were prepared for soil burial test. The test was conducted in the natural soil environment for 3 and 6 months. Different loading of TPSS (10, 20, 30, 40, and 50 wt. %) were used in this study. After soil burial, the blends were evaluated for their tensile properties and scanning electron microscopy (SEM) to observe the surface morphology properties after the test. For LDPE/TPSS, it was observed that the tensile strength decreased with the increase of soil burial time, as well as Young modulus and elongation at break (EB). The LDPE/TPSS/PE-g-MA also showed the same trend for the tensile properties, but with higher properties as compared to uncompatibilized blends. The tensile properties also decreased with the increase in the TPSS loading for both the LDPE/TPSS and LDPE/TPSS/PE-g-MA. Meanwhile,
    the scanning electron microscopy (SEM) on the blend surfaces after the soil burial test showed that degradability increased with the increase in the exposure time as well as the TPSS loading.
  3. Noor Zalikha Mohamed Islam, Nadras Othman, Zulkifli Ahmad, Hanafi Ismail
    Sains Malaysiana, 2011;40:1123-1127.
    This paper describes the effect of pro-degradant additives (PDA) on photo-oxidative aging of polypropylene (PP) films after being time accelerated in UV-weathering chamber. Thin films (0.12 mm) containing these additives were prepared by sheeting process. The effect of UV on PP films in the presence of these additives was investigated. Changes in the PP films appearance, tensile properties and carbonyl index (CI) were used to investigate the degradation behavior. The films became completely pulverised after 100 h of photo-oxidative treatment and could not be tested further. Films containing PDA showed rapid loss in tensile properties within 100 h of photo-oxidative aging. In addition, the CI results of photo-oxidative films increased with increasing PDA amount within the time interval of aging and the activity was due to the mechanism reaction of PP with PDA particles. During the aging process the material becomes denser due to tighter packing and incorporation of oxygen into the amorphous regions of the polymer. The results indicated that the presence of PDA contributed to the photo degradation and the activity was very much influenced by the amount PDA.
  4. Hazwani Syaza Ahmad, Hanafi Ismail, Azura Abd Rashid
    Sains Malaysiana, 2015;44:835-842.
    Epoxidized natural rubber (ENR-50) has been used as a compatibilizer for natural rubber-recycled acrylonitrile-butadiene
    rubber (NR/NBRr) blends, vulcanized by sulfur. NBR gloves have excellent resistance to punctures, tear and many types
    of chemicals, while NR has good physical and mechanical properties. Incorporation of ENR-50 into the rubber blends
    has improved processability, stiffness, resilience and excellent oil resistance. NR/NBRr blends were prepared by two-roll
    mill with five different compositions with the ENR-50 content fixed at 10 phr. Cure characteristics, mechanical properties
    and morphology (SEM) studies were performed to determine the compatibility of NR/NBRr blends in the presence of ENR-
    50. The cure characteristics showed that NR/NBRr blends with the presence of ENR-50 have lower scorch time (ts2) and
    cure time (t90) than NR/NBRr blends without ENR-50. However, the NR/NBRr blends with ENR-50 exhibited higher minimum
    torque (ML
    ) and maximum torque (MH) which indicated difficult processability of the blends after compatibilization.
    Incorporation of ENR-50 into NR/NBRr blends improved all the tensile properties (tensile strength, tensile modulus and
    elongation at break) compared with NR/NBRr blends without ENR-50. The improvement in hardness upon compatibilization
    is due to an increase in crosslink density. Scanning electron microscopy (SEM images) of the fracture surfaces indicates
    that, with the addition of ENR-50 in NR/NBRr blends, better adhesion between NR and NBRr was obtained, thus improving
    the compatibility of NR/NBRr blends.
  5. Pang AL, Azhar Abu Bakar, Hanafi Ismail
    Sains Malaysiana, 2018;47:571-580.
    The development of natural fiber polymer composites is increasing worldwide and in some applications, these composites
    are used at outdoor rendering them exposed to ultra-violet (UV) radiation. The paper investigates the degradation behavior
    of linear low density polyethylene/poly (vinyl alcohol)/kenaf (LLDPE/PVOH/KNF) composites after exposure to different
    natural weathering durations. The composites with KNF loadings of 10, 20 and 40 parts per hundred resin (phr) were
    exposed to natural weathering for 3 months and 6 months, respectively. The weathered composites were characterized by
    Fourier transform infrared (FTIR) spectroscopy, universal testing machine, field emission scanning electron microscopy
    (FESEM) and differential scanning calorimetry (DSC). The FTIR analysis showed an obvious carbonyl peak in composites
    after weathering as an evidence of oxidation. The weight loss percentage of composites increased with respect to exposure
    duration due to higher absorption of UV irradiation. The tensile properties of weathered composites were lower than
    that of control composites and these properties also decreased with increasing exposure duration. FESEM micrographs
    illustrated that composites with longer exposure duration suffered more surface damaged. The crystallinity percentage
    was found to increase with increasing exposure duration.
  6. Ahmad Fikri Abdul Karim, Hanafi Ismail, Zulkifli Mohamad Ariff
    Sains Malaysiana, 2018;47:2163-2169.
    This research was carried out to study the effects of kenaf loading and alkaline treatment on tensile properties, density,
    thermal and morphological properties of kenaf filled natural rubber latex foam (NRLF). Samples were prepared using a
    Dunlop method. From the results, increasing loading of kenaf reduced the tensile strength and elongation at break for
    both samples, treated and untreated kenaf filled NRLF. Meanwhile, modulus at 100% elongation and density increased
    with an increased in kenaf loading. Samples with treated kenaf showed higher tensile strength, modulus at 100%
    elongation and density but low in elongation at break as compared with samples with untreated kenaf. Thermal study
    by using thermogravimetric analysis (TGA) showed that thermal stability reduced with increased in kenaf loading for
    both samples. Samples with treated kenaf have higher thermal stability compared with samples of untreated kenaf. The
    filler-matrix interaction and the pores size variation of both samples was clearly seen in the micrograph images by using
    scanning electron microscope (SEM).
  7. Abdul Malek Ya’acob, Azhar Abu Bakar, Hanafi Ismail, Khairul Zaman Dahlan
    MyJurnal
    A hybrid composite consisting of untreated kenaf fibre and glass fibre was investigated by varying the fibre glass weight ratios and using interply fabrication method. The expected results were to have better composite performance in terms of its toughness and impact strength as a comparison between the hybrid (kenaf/E-glass fibre composites) and E-GF composites alone. For the purpose of this study, all the samples were prepared using typical sample preparation. Results show that the incorporation of E–glass fibre resulted in brittle failure and a higher amount of E-Glass fibre with low percentage of kenaf fibre causing high strength, low ductile, and low toughness behaviours.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links