The study found that the activity concentrations of the radionuclides 238U, 232Th and 40K in the sandstone are 32 ± 13, 29.6 ± 12.2, and 132.6 ± 86.4 Bq kg-1, respectively. These values are lower than the reported worldwide limits of 33, 45, and 412 Bq kg-1. According to the present study, the absorbed dose rate (Dair), the annual effective dose, and the excess life time cancer were all found to be below the worldwide mean. Pearson correlation, PCA, and HCA were used to analyze the data and identify patterns in the relationship between radionuclides and radiological hazards. A statistical analysis of the sandstones showed that the radioactive elements 238U, 232Th and 40K are the main contributors to the radioactive risk. The study suggests that the sandstone is safe to use. The levels of radioactivity are not high enough to pose a risk to human health.
One of the most well-liked energizing drinks is now tea, which is primarily used in Malaysia. The natural radioactivity in the associated soils where tea plants are cultivated plays a major role in determining the presence of radionuclides in tea leaves. The present study assesses the transfer of radionuclides from soil-to-tea leaves and then estimates the committed effective doses through tea consumption. Tea leaves and the associated soils were obtained from the largest tea plantation area, which is located in the Cameron Highlands, Malaysia. The marketed tea leaves in powdered form were obtained from the supermarkets in Kuala Lumpur. HPGe gamma-ray spectrometry was used to determine the prevailing concentrations of long-lived radioactive materials in tea leaves. Activity concentrations of 226Ra, 232Th, and 40K in tea soils ranged from 49 to 101.7 Bq kg-1, 74.5-124.1 Bq kg-1 and 79.6-423.2 Bq kg-1, respectively, while the respective values in tea leaves are 14.4-23.8 Bq kg-1, 12.9-29.5 Bq kg-1 and 297-387.5 Bq kg-1. Transfer factors of radionuclides showed typical values (<1.0) except for the 40K. The threshold tea consumption rates suggest that one should not consume more than 67 g of tea leaves per day (around 4 g of tea leaves are needed for making 1 cup of tea, so 17 cups per day) to avoid negative health effects. Committed effective doses due to tea consumption are found to be lower (5.18-6.08 μSv y-1) than the United Nations Scientific Committee on the Effects of Atomic Radiation (2000) reference dose guidance limit of 290 μSv y-1 for foodstuffs; however, it should be noted that the guidance limit is recommended for all foodstuffs collectively. Providing data on natural radioactivity in tea leaves grown in Malaysia, this study may help people manage a healthy lifestyle.
In clinical settings, standard dosimeters might miss radiation mishaps. Retrospective dosimeters could help to track personnel (such as patients and other staff who don't wear dosimeters) exceeding safe limits and assess long-term exposure trends. This study has investigated key thermoluminescence (TL) dosimetric characteristics, including the glow curve structure, dose-response, energy dependence, sensitivity and fading of various safety glasses that are used as screen protectors of smartphones subjected to photon irradiation. Among the studied glasses, the HD Anti-Peep safety glass for iPhone has been found to exhibit a linear dose-response with a regression coefficient of 99% within the dose range of 2-10 Gy. Moreover, all the safety glasses showed independence with respect to photon energy of 6 MV and 10 MV. The TL glow curves of the samples showed a broad glow peak between 125 °C and 325 °C at 10 Gy. The TL kinetic parameters of the safety glasses were also studied by analyzing the glow curves using the peak shape and initial rise method. The geometric factor (μg) is found to be within the range of 0.43-0.53, which indicates the suitability of applying Chen's general-order formula to calculate the kinetic parameters such as activation energy, frequency factor and trap lifetime. The activation energy (E) and frequency factor (s) are found in the range of 0.31-0.54 eV and 4.55 × 103 to 2.12 × 106 s-1 respectively obtained via the peak shape method. The relatively long trap lifetime and observed thermoluminescence features indicate that the HD Anti-Peep safety glass offers a better option to estimate dose retrospectively to ensure the safety of human health.