Displaying all 6 publications

Abstract:
Sort:
  1. Ismail NAH, Wee SY, Haron DEM, Kamarulzaman NH, Aris AZ
    Mar Pollut Bull, 2020 Jan;150:110735.
    PMID: 31784268 DOI: 10.1016/j.marpolbul.2019.110735
    Endocrine-disrupting compounds (EDCs) such as hormones, pesticides, phenolic compounds, and pharmaceuticals compounds can cause adverse effects on humans, animals, and other living organisms. One of the largest mariculture areas situated in Pulau Kukup, Johor, Malaysia, is actively involved in exporting marine fish to other countries worldwide. This paper aims to provide baseline data on the level of EDC pollutants found in mariculture sediments in Malaysia since no reports have investigated this issue. Calculated samples recovered are between 50.39 and 129.10% at 100 ng/g spiking level. The highest concentration in the sediment samples was bisphenol A (0.072-0.389 ng/g dry weight) followed by diethylstilbestrol (<0.208-0.331 ng/g dry weight) and propranolol (<0.250-0.275 ng/g dry weight). Even though the concentrations of the targeted compounds obtained were low, their effects could become more evident longer term, which raises not only environmental health concerns but the potential risk to humans.
  2. Wee SY, Haron DEM, Aris AZ, Yusoff FM, Praveena SM
    Environ Geochem Health, 2020 Oct;42(10):3247-3261.
    PMID: 32328897 DOI: 10.1007/s10653-020-00565-8
    Active pharmaceutical ingredients (APIs) are typical endocrine disruptors found in common pharmaceuticals and personal care products, which are frequently detected in aquatic environments, especially surface water treated for drinking. However, current treatment technologies are inefficient for removing emerging endocrine disruptors, leading to the potential contamination of tap water. This study employed an optimized analytical method comprising solid-phase extraction and liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) to detect APIs in tap water in Putrajaya, Malaysia. Several therapeutic classes of pharmaceuticals and personal care products, including anti-inflammatory drugs (dexamethasone and diclofenac), antibiotics (sulfamethoxazole and triclosan), antiepileptics (primidone), antibacterial agents (ciprofloxacin), beta-blockers (propranolol), psychoactive stimulants (caffeine), and antiparasitic drugs (diazinon), were detected in the range of 
  3. Wee SY, Ismail NAH, Haron DEM, Yusoff FM, Praveena SM, Aris AZ
    J Hazard Mater, 2022 02 15;424(Pt A):127327.
    PMID: 34600377 DOI: 10.1016/j.jhazmat.2021.127327
    Humans are exposed to endocrine disrupting compounds (EDCs) in tap water via drinking water. Currently, most of the analytical methods used to assess a long list of EDCs in drinking water have been made available only for a single group of EDCs and their metabolites, in contrast with other environmental matrices (e.g., surface water, sediments, and biota) for which more robust methods have been developed that allow detection of multiple groups. This study reveals an analytical method of one-step solid phase extraction, incorporated together with liquid chromatography-tandem mass spectrometry for the quantification of multiclass EDCs (i.e., pharmaceuticals, hormones, plasticizers, and pesticides) in drinking water. Fifteen multiclass EDCs significantly varied in amount between field samples (p 
  4. Haron DEM, Yoneda M, Hod R, Ramli MR, Aziz MY
    Environ Sci Pollut Res Int, 2023 Nov;30(51):111062-111075.
    PMID: 37801249 DOI: 10.1007/s11356-023-30022-9
    Multiclass of endocrine disrupting chemicals (EDCs) such as nine perfluoroalkyl and polyfluoroalkyl substances (PFAS), five bisphenols, and four parabens were analysed in tap water samples from Malaysia's Klang Valley region. All samples were analysed using liquid chromatography mass tandem spectrometry (LC-MS/MS) with limit of quantitation (LOQ) ranged between 0.015 and 5 ng/mL. Fifteen of the 18 EDCs were tested positive in tap water samples, with total EDC concentrations ranging from 0.28 to 5516 ng/L for all 61 sampling point locations. In a specific area of the Klang Valley, the total concentration of EDCs was found to be highest in Hulu Langat, followed by Sepang, Putrajaya, Petaling, Kuala Lumpur, Seremban, and Gombak/Klang. PFAS and paraben were the most found EDCs in all tap water samples. Meanwhile, ethyl paraben (EtP) exhibited the highest detection rate, with 90.2% of all locations showing its presence. Over 60% of the regions showed the presence of perfluoro-n-butanoic acid (PFBA), perfluoro-n-hexanoic acid (PFHXA), perfluoro-n-octanoic acid (PFOA), perfluoro-n-nonanoic acid (PFNA), and perfluoro-1-octanesulfonate (PFOS), whereas the frequency of detection for other compounds was less than 40%. The spatial distribution and mean concentrations of EDCs in the Klang Valley regions revealed that Hulu Langat, Petaling Jaya, and Putrajaya exhibited higher levels of bisphenol A (BPA). On the other hand, Kuala Lumpur and Sepang displayed the highest mean concentrations of PFBA. In the worst scenario, the estimated daily intake (EDI) and risk quotient of some EDCs in this study exceeded the acceptable daily limits recommended by international standards, particularly for BPA, PFOA, PFOS, and PFNA, where the risk quotient (RQ) was found to be greater than 1, indicating a high risk to human health. The increasing presence of EDCs in tap water is undoubtedly a cause for concern as these substances can have adverse health consequences. This highlights the necessity for a standardised approach to evaluating EDC exposure and its direct impact on human populations' health.
  5. Zainuddin AH, Roslan MQJ, Razak MR, Yusoff FM, Haron DEM, Aris AZ
    Mar Pollut Bull, 2023 Jul;192:115019.
    PMID: 37201347 DOI: 10.1016/j.marpolbul.2023.115019
    Bisphenol analogues are prevalent globally because of rampant usage and imprecise processing techniques, prompting alerts about environmental and health hazards. The method employed in this study by solid phase extraction (SPE) and liquid chromatography-tandem quadrupole mass spectrometer (LC-MS/MS) for both quantification and qualitative analysis of the bisphenol compounds in the surface water samples. The coastal and estuarine surface water of Port Dickson and Lukut ranges from 1.32 ng/L to 1890.51 ng/L of bisphenol analogues. BPF mean concentration at 1143.88 ng/L is the highest, followed by BPA and BPS at 59.01 ng/L and 10.96 ng/L, respectively. Based on RQm for bisphenol analogues, the highest for BPF at 2.49 (RQ > 1, high risk), followed by BPS at 0.12 (0.1 
  6. Razak MR, Aris AZ, Sukatis FF, Zaki MRM, Zainuddin AH, Haron DEM, et al.
    J Sep Sci, 2023 Jan;46(1):e2200282.
    PMID: 36337037 DOI: 10.1002/jssc.202200282
    In toxicological analysis, the analytical validation method is important to assess the exact risk of contaminants of emerging concern in the environment. Syringe filters are mainly used to remove impurities from sample solutions. However, the loss of analyte to the syringe filter could be considerable, causing an underestimate of the analyte concentrations. The current study develops and validates simultaneous liquid chromatography-mass spectrometry analysis using a direct filtration method to detect four groups of contaminants of emerging concern. The adsorption of the analyte onto three different matrices and six types of syringe filters is reported. The lowest adsorption of analytes was observed in methanol (16.72%), followed by deionized water (48.19%) and filtered surface lake water (48.94%). Irrespective of the type of the matrices, the lowest average adsorption by the syringe filter was observed in the 0.45 μm polypropylene membrane (15.15%), followed by the 0.20 μm polypropylene membrane (16.10%), the 0.20 μm regenerated cellulose (16.15%), the 0.20 μm polytetrafluoroethylene membrane (47.38%), the 0.45 μm nylon membrane (64.87%) and the 0.20 μm nylon membrane (71.30%). In conclusion, the recommended syringe filter membranes for contaminants of emerging concern analysis are polypropylene membranes and regenerated cellulose, regardless of the matrix used.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links