Displaying all 6 publications

Abstract:
Sort:
  1. Mohamad FH, Has ATC
    J Mol Neurosci, 2019 Feb;67(2):343-351.
    PMID: 30607899 DOI: 10.1007/s12031-018-1246-4
    GABAA receptors are the major inhibitory neurotransmitter receptor in the human brain. The receptors are assembled from combination of protein subunits in pentameric complex which may consist of α1-6, β1-3, γ1-3, ρ1-3, δ, ε, θ, or π subunits. There are a theoretical > 150,000 possible assemblies and arrangements of GABAA subunits, although only a few combinations have been found in human with the most dominant consists of 2α1, 2β2, and 1γ2 in a counterclockwise arrangement as seen from the synaptic cleft. The receptors also possess binding sites for various unrelated substances including benzodiazepines, barbiturates, and anesthetics. The α5-containing GABAARs only make up ≤ 5% of the entire receptor population, but up to 25% of the receptor subtype is located in the crucial learning and memory-associated area of the brain-the hippocampus, which has ignited myriads of hypotheses and theories in regard to its role. As well as exhibiting synaptic phasic inhibition, the α5-containing receptors are also extrasynaptic and mediate tonic inhibition with continuously occurring smaller amplitude. Studies on negative-allosteric modulators for reducing this tonic inhibition have been shown to enhance learning and memory in neurological disorders such as schizophrenia, Down syndrome, and autism with a possible alternative benzodiazepine binding site. Therefore, a few α5 subunit-specific compounds have been developed to address these pharmacological needs. With its small population, the α5-containing receptors could be the key and also the answer for many untreated cognitive dysfunctions and disorders.
  2. Has ATC, Chebib M
    Curr Pharm Des, 2018;24(17):1839-1844.
    PMID: 29766792 DOI: 10.2174/1381612824666180515123921
    GABAA receptors are members of the Cys-loop family of ligand-gated ion channels which mediate most inhibitory neurotransmission in the central nervous system. These receptors are pentameric assemblies of individual subunits, including α1-6, β1-3, γ1-3, δ, ε, π, θ and ρ1-3. The majority of receptors are comprised of α, β and γ or δ subunits. Depending on the subunit composition, the receptors are located in either the synapses or extrasynaptic regions. The most abundant receptors are α1βγ2 receptors, which are activated and modulated by a variety of pharmacologically and clinically unrelated agents such as benzodiazepines, barbiturates, anaesthetics and neurosteroids, all of which bind at distinct binding sites located within the receptor complex. However, compared to αβγ, the binary αβ receptors lack a benzodiazepine α-γ2 interface. In pentameric αβ receptors, the third subunit is replaced with either an α1 or a β3 subunit leading to two distinct receptors that differ in subunit stoichiometry, 2α:3β or 3α:2β. The consequence of this is that 3α:2β receptors contain an α-α interface whereas 2α:3β receptors contain a β-β interface. Apart from the replacement of γ by α1 or β3 in binary receptors, the incorporation of ε subunit into GABAA receptors might be more complicated. As the ε subunit is not only capable of substituting the γ subunit, but also replacing the α/β subunits, receptors with altered stoichiometry and different pharmacological properties are produced. The different subunit arrangement of the receptors potentially constructs novel binding sites which may become new targets of the current or new drugs.
  3. Juvale IIA, Hassan Z, Has ATC
    Int J Med Sci, 2021;18(16):3851-3860.
    PMID: 34790061 DOI: 10.7150/ijms.60928
    Cancer is one of the leading causes of death in both developed and developing countries. Due to its heterogenous nature, it occurs in various regions of the body and often goes undetected until later stages of disease progression. Feasible treatment options are limited because of the invasive nature of cancer and often result in detrimental side-effects and poor survival rates. Therefore, recent studies have attempted to identify aberrant expression levels of previously undiscovered proteins in cancer, with the hope of developing better diagnostic tools and pharmaceutical options. One class of such targets is the π-subunit-containing γ-aminobutyric acid type A receptors. Although these receptors were discovered more than 20 years ago, there is limited information available. They possess atypical functional properties and are expressed in several non-neuronal tissues. Prior studies have highlighted the role of these receptors in the female reproductive system. New research focusing on the higher expression levels of these receptors in ovarian, breast, gastric, cervical, and pancreatic cancers, their physiological function in healthy individuals, and their pro-tumorigenic effects in these cancer types is reviewed here.
  4. Effendy MA, Yunusa S, Mat NH, Has ATC, Müller CP, Hassan Z
    Behav Brain Res, 2023 Feb 13;438:114169.
    PMID: 36273648 DOI: 10.1016/j.bbr.2022.114169
    Mitragynine, an indole alkaloid from the plant Mitragyna speciosa (Kratom), has been reported to modify hippocampal synaptic transmission. However, the role of glutamatergic neurotransmission modulating synaptic plasticity in mitragynine-induced synaptic changes is still unknown. Here, we determined the role of AMPA- and NMDA glutamate receptors in mitragynine-induced synaptic plasticity in the hippocampus. Male Sprague Dawley rats received either vehicle or mitragynine (10 mg/kg), with or without the AMPA receptor antagonist, NBQX (3 mg/kg), or the NMDA receptor antagonist, MK-801 (0.2 mg/kg). Field excitatory postsynaptic potentials (fEPSP) during baseline, paired-pulse facilitation (PPF) and long-term potentiation (LTP) were recorded in-vivo in the hippocampal CA1 area of anaesthetised rats. Basal synaptic transmission and LTP were significantly impaired after mitragynine, NBQX, and MK-801 alone, without an effect on PPF. Combined effects suggest a weak functional AMPA- as well as NMDA receptor antagonist action of mitragynine.
  5. Ahad MA, Chear NJ, Keat LG, Has ATC, Murugaiyah V, Hassan Z
    Ageing Res Rev, 2023 Aug;89:101990.
    PMID: 37343678 DOI: 10.1016/j.arr.2023.101990
    Research employing a bio-enhanced fraction of Clitoria ternatea (CT) to treat cognitive decline in the animal model has not yet been found. This study aimed to determine the neuroprotective effect of CT root bioactive fraction (CTRF) in chronic cerebral hypoperfusion (CCH) rat model. CTRF and its major compound, clitorienolactones A (CLA), were obtained using column chromatography. A validated HPLC-UV method was employed for the standardization of CTRF. CCH rats were given orally either vehicle or fraction (10, 20 and 40 mg/kg). Behavioural and hippocampal neuroplasticity studies were conducted following 4 weeks post-surgery. The brain hippocampus was extracted for proteins and neurotransmitters analyses. HPLC analysis showed that CTRF contained 25% (w/w) of CLA. All tested doses of CTRF and CLA (10 mg/kg) significantly restored cognitive deficits and reversed the inhibition of neuroplasticity by CCH. However, only CTRF (40 mg/kg) and CLA (10 mg/kg) significantly reversed the elevation of amyloid-beta plaque. Subsequently, treatment with CTRF (40 mg/kg) and CLA (10 mg/kg) alleviated the downregulation of molecular synaptic signalling proteins levels caused by CCH. The neurotransmitters level was restored following treatment of CTRF and CLA. Our finding suggested that CTRF improves memory and neuroplasticity in CCH rats which was mainly contributed by CLA.
  6. Chun LW, Ramachandran RK, Othman SFF, Has ATC, George A, Mat NH, et al.
    Behav Brain Res, 2023 Apr 06;447:114423.
    PMID: 37030545 DOI: 10.1016/j.bbr.2023.114423
    Persicaria minor (P. minor) is a herbal plant with many uses in food, perfume, and the medical industry. P. minor extract contains flavonoids with antioxidant and anticholinesterase capacity, which could enhance cognitive functions. P. minor extract has been proven to enhance memory. However, its role in an animal model of chronic cerebral hypoperfusion (CCH), which resembles human vascular dementia, has yet to be explored. Therefore, the present study investigates the effects of chronic (14 days) administration of aqueous P. minor extract on different stages of learning and memory processes and the metabolic pathways involved in the chronic cerebral hypoperfused rats induced by the permanent bilateral occlusion of common carotid arteries (PBOCCA) surgery. Chronic treatment of P. minor extract at doses of 200 and 300 mg/kg, enhanced recognition memory of the PBOCCA rats. P. minor extract (200 mg/kg) was also found to restore the spatial memory impairment induced by CCH. A high dose (300 mg/kg) of the P. minor extract significantly increased the expression of both ACh and GABA neurotransmitters in the hippocampus. Further, distinctive metabolite profiles were observed in rats with different treatments. Three major pathways involved in the cognitive enhancement mechanism of P. minor were identified. The present findings demonstrated an improving effect of P. minor extract on memory in the CCH rat model, suggesting that P. minor extract could be a potential treatment for vascular dementia and Alzheimer's patients. P. minor is believed to improve cognitive deficits by regulating pathways involved in retinol, histidine, pentose, glucuronate, and CoA metabolism.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links