Coronavirus disease 2019 (COVID-19) is an emerging disease caused by the coronavirus, SARS-CoV-2, which leads to severe respiratory infections in humans. COVID-19 was first reported in December 2019 in Wuhan city, a populated area of the Hubei province in China. As of now, Wuhan and other cities nearby have become safe places for locals. The rapid control of the spread of COVID-19 infection was made possible due to several interventions and measures that were undertaken in Wuhan. This narrative review study was designed to evaluate the emerging literature on the combined measures taken to control the COVID-19 pandemic in Wuhan city. Science Direct, Springer, Web of Science, and the PubMed data repositories were searched for studies published between December 1, 2019, and June 07, 2020. The referred "preferred reporting items for systematic reviews and meta-analyses" (PRISMA) protocol was used to conduct this narrative review. A total of 330 research studies were found as a result of the initial search based on exclusion and inclusion criteria, and 30 articles were chosen on final evaluation. It was discovered that the combined measures to control the spread of COVID-19 in Wuhan included cordon sanitaire, social distancing, universal symptom surveys, quarantine strategies, and transport restrictions. Based on the recommendations presented in this review study, existing policies with regard to combined measures and public health policies can be enforced by other countries to implement a rapid control procedure to control the spread of the COVID-19 pandemic.
This paper presents a narrative review study of 5 popular data repositories focusing on challenges of pregnant women protection during the COVID-19 pandemic. The study concludes that the likelihood of a vertical transmission of COVID-19 infection from pregnant women to neonates was not observed. Nevertheless, it remains a serious risk for them during their earlier stage of pregnancy, thus, special attention from health professionals has been recommended.
Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release were developed through incorporation of nano-hydroxyapatite [nHAp] powders within ionotropically-gelled calcium ion-induced alginate-poly (vinyl pyrrolidone) blends polymeric systems. nHAp powders were synthesized by precipitation technique using calcium hydroxide [Ca(OH)2] and orthophosphoric acid [H3PO4] as raw materials. The average particle size of these was synthesized. nHAp powders was found as 19.04 nm and used to prepare nHAp-alginate-PVP beads containing DS. These beads exhibited drug entrapment efficiency (%) of 65.82±1.88 to 94.45±3.72% and average bead sizes of 0.98±0.07 to 1.23±0.15 mm. These beads were characterized by scanning electron microscopy (SEM) and Fourier transform-infra red (FTIR) spectroscopy analyses. Various nHAp-alginate-PVP beads containing DS exhibited prolonged sustained drug release and followed the Koresmeyer-Peppas model of drug release (R2=0.9908-0.9978) with non-Fickian release (anomalous transport) mechanism (n=0.73-0.84) for drug release over 8 h.
The present work was employing the Quality by Design approach for the development and validation of a LC-MS-MS method to support the clinical advancement in determination of sildenafil in human plasma using lorazepam as an internal standard. Sample preparation involved solid phase extraction and calibration range observed between 3 and 1,700 ng/mL. The method was systematically optimized by employing Box-Behnken design and used mobile phase flow rate, pH and composition of mobile phase as the critical factors, and assessing the design for retention time and peak area as the responses. A substantial decrease in the variability associated with the method variables was shown in optimization studies and confirmed enhanced method robustness. The present studies revealed that developed method achieves all the regulatory requirements for linearity, accuracy, precision, selectivity, sensitivity and stability for the determination of sildenafil in human plasma. There was not any significant change in the stability of the drug shown by stability studies, performed in human plasma through freeze-thaw cycles, bench-top stability, short-term stability, long-term stability and auto sampler stability. In short, this method shows satisfactory results for the analysis of sildenafil in human plasma and possesses high degree of utility in pharmacokinetic and bioequivalence studies.
Polyphenolic phytoconstituents have been widely in use worldwide for ages and are categorised as secondary metabolites of plants. The application of polyphenols such as quercetin, resveratrol, curcumin as nutritional supplements has been researched widely. The use of polyphenols and specifically quercetin, for improving memory and mental endurance has shown significant effects among rats. Even though similar results have not been resonated among humans, but preclinical results have encouraged researchers to explore other polyphenols to study the effects as supplements among athletes. The phytopharmacological research has elucidated the use of natural polyphenols to prevent and treat various physiological and metabolic disorders owing to their free radical scavenging properties, anti-inflammatory, anti-cancer, and immunomodulatory effects. In- -spite of the tremendous pharmacological profile, one of the most dominant problem regarding the use of polyphenolic compounds is their low bioavailability. Nanonization is considered as one of the most prominent approaches among many. This article aims to review and discuss the molecular mechanisms of recently developed nanocarrier-based drug delivery systems for polyphenols and their application as drugs and supplements. Nanoformulations of natural polyphenols as bioactive agents, such as quercetin, kaempferol, fisetin, rutin, hesperetin, and naringenin epigalloccatechin- 3-gallate, genistein, ellagic acid, gallic acid, chlorogenic acid, ferulic acid, curcuminoids, and stilbenes is expected to have better efficacy. These delivery systems are expected to provide higher penetrability of polyphenols at cellular levels and exhibit a controlled release of the drugs. It is widely accepted that natural polyphenols do demonstrate significant therapeutic effects. However, the hindrances in their absorption, specificity, and bioavailability can be overcome using nanotechnology.
Epilepsy is known as one of the major challenges for medical science. The sudden appearance of a seizure has been a significant health emergency as it may lead to further complications. Although key advancement have been achieved in terms of pharmacological approaches for epilepsy, many issues remain uncertain. Lipid carriers have been at the forefront, especially in neurodegenerative diseases such as epilepsy, Alzheimer's, dementia, etc. The blood-brain barrier still appears to be a major impediment in the successful treatment of epileptic seizures. This is mainly due to the limited bioavailability of most anti-convulsant drugs. The present review encompasses the issues underlying the current approach for epilepsy drug treatment and highlights the newer, novel, and more precise drug delivery system to manage seizures. The advantage of using a lipid-based delivery system is its superior absorption in the brain cells. Ample evidence shows that reducing the particle size also infuses the drug easily through the blood-brain barrier. The application of liposomes, polymeric nanoparticles, metallic nanoparticles, and solid lipid nanoparticles for the treatment and management of epilepsy has been highlighted in the present review. This review will provide an overview of the current status of the treatment and recent advances in the treatment of epilepsy.
Many methods, including solid dispersion, micellization, and inclusion complexes, have been employed to increase the solubility of potent drugs. Beta-cyclodextrin (βCD) is a cyclic oligosaccharide consisting of seven glucopyranoside molecules, and is a widely used polymer for formulating soluble inclusion complexes of hydrophobic drugs. The enzymatic activity of Glycosyltransferase or α-amylase converts starch or its derivatives into a mixture of cyclodextrins. The βCD units are characterized by α -(1-4) glucopyranose bonds. Cyclodextrins possess certain properties that make them very distinctive because of their toroidal or truncated cage-like supramolecular configurations with multiple hydroxyl groups at each end. This allowed them to encapsulate hydrophobic compounds by forming inclusion complexes without losing their solubility in water. Chemical modifications and newer derivatives, such as methylated βCD, more soluble hydroxyl propyl methyl βCD, and sodium salts of sulfobutylether-βCD, known as dexolve® or captisol®, have envisaged the use of CDs in various pharmaceutical, medical, and cosmetic industries. The successful inclusion of drug complexes has demonstrated improved solubility, bioavailability, drug resistance reduction, targeting, and penetration across skin and brain tissues. This review encompasses the current applications of β-CDs in improving the disease outcomes of antimicrobials and antifungals as well as anticancer and anti-tubercular drugs.
Cancer and tumor have been major reasons for numerous deaths in this century across the world. Many strategies have been designed to treat, diagnose, or prevent cancer. The success of chemotherapy largely depends on drug targeting. The advent of nanotechnology has vastly improved drug delivery for targeting and diagnosis. Nevertheless, the accuracy of drug targeting with polymeric nanoparticles has always been questionable. The polymeric nanoparticles synthesized from varieties of lipid-based compounds or combined with vectors, such as liposomes, ethosomes, and transfersomes, may allow the drug to overcome the issue of resistance to drug absorption in biological membranes. The combined effects of lipid-based nanocarriers are known to improve the efficacy and accuracy of polymeric nanoparticles. The present review explores the application of lipid based nanocarriers in the treatment and diagnosis of cancer A special focus is given to the use of lipid-based nanocarriers in the treatment, diagnosis, and mitigation of cancer located in blood, brain, lung, and colon. The treatment of these cancers has always been questionable as the chances of relapse are very high. The review encompasses the use of lipid-based nanocarriers in targeting tissue-specific cancer cells.
Malaysia is a predominant Muslim country and the recent surge in vaccine-preventable disease enticed us to conduct a survey to measure the Knowledge, Attitude and Perception of Muslim parents toward vaccination process. The data were collected under four segments such as demography, Knowledge, Attitude and Perception. The questionnaire had high internal consistency (0.823) for Cronbach's alpha. The sociodemographic determinants such as marital status (OR = 1.12; 0.91-1.38;p
There are typically lower COVID-19 vaccination rates among developing versus higher-income countries, which is exacerbated by greater vaccine hesitancy. However, despite the increasing evidence of safety, parents are still reluctant to vaccinate their children against COVID-19. This is a concern in countries experiencing successive waves, such as Pakistan. Consequently, the objective of this study was to gain better understanding and practice regarding parents vaccinating their children against COVID-19 in Pakistan. A cross-sectional study was conducted to measure parents' attitudes towards vaccinating their children. In total, 451 parents participated in the study, giving a response rate of 70.4%; 67.4% were female, 43.2% belonged to the 40-49 years age group, and 47.7% had three children, with 73% of parents fully immunized against COVID-19. We found that 84.7% of parents did not consider COVID-19 to be a very serious issue, and 53.9% considered that their children were not at high risk of COVID-19. Overall, only a quarter of the study participants had currently vaccinated their children and 11.8% were willing to vaccinate their children in the near future. Parents who had a better knowledge of COVID-19, secondary or higher education, children who had chronic illness, and those parents whose children had been infected with COVID-19 were more likely to have their children vaccinated. The most common reasons for vaccine hesitancy were "my child is not at high risk of COVID-19" (61%) and "I am afraid to put/inject a foreign object inside my child's body" (52.2%). Overall, vaccine acceptance was low among the parents of the children. Those parents with higher education, chronic illnesses, greater knowledge of COVID-19 and its vaccines, and those whose children had been infected with COVID-19 were significantly (p < 0.001) inclined towards vaccinating their children. Effective campaigns as well as awareness sessions are needed to address misinformation and reduce vaccine hesitancy.