Displaying all 7 publications

Abstract:
Sort:
  1. Agbaje, R., Hassan, C. Z., Norlelawati, A., Huda-Faujan, N., Abdul Rahman, A.
    MyJurnal
    The need for nutritional and functional foods has increased. Consumers, these days, do not
    eat snacks only to provide satisfaction for their hunger, but also to supply essential nutrients
    to body. The objective of this study was to develop six formulations of granolas/cereal bars
    using different combination of Sunnah fruits such as dates (Phoenix dactylifera), raisins (Vitis
    vinifera L.) and figs (Ficus carica). The cereal bars were formulated using dry raw materials
    (glutinous rice, black Cummins, etc.) and binding agents (honey and glucose syrup). The cereal
    bars were assessed for water activity and proximate composition. It was observed that the
    sample B, made with 70 g of glucose syrup, 100 g honey and 450 g of total fruits had the
    highest value of moisture (18.73%) as compared to other formulations (P˂ 0.05). There were no
    differences in protein contents of the cereal bars formulated. Ash contents of the formulations
    were significantly different (P˂ 0.05) in samples B and F; the values ranged between 0.97%
    and 1.88%. The fat contents were significantly different with formulation B having the highest
    fat content (10.72%) and carbohydrate contents were affected by fibre contents; samples with
    lower crude fibres had higher carbohydrate contents which also reflect in the energy contents
    of the granola/cereal bar samples. Lowest aw (water activity) was observed in the samples with
    lower fruit contents which could be as a result of their lower moisture contents. According to
    the results, incorporation of glutinous rice flakes with different composition Sunnah foods and
    binding agents; honey and glucose syrup can be used to formulate cereal bars with appreciable
    proximate and energy contents.
  2. Spinelli A, Carrano FM, Laino ME, Andreozzi M, Koleth G, Hassan C, et al.
    Tech Coloproctol, 2023 Aug;27(8):615-629.
    PMID: 36805890 DOI: 10.1007/s10151-023-02772-8
    Artificial intelligence (AI) has the potential to revolutionize surgery in the coming years. Still, it is essential to clarify what the meaningful current applications are and what can be reasonably expected. This AI-powered review assessed the role of AI in colorectal surgery. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-compliant systematic search of PubMed, Embase, Scopus, Cochrane Library databases, and gray literature was conducted on all available articles on AI in colorectal surgery (from January 1 1997 to March 1 2021), aiming to define the perioperative applications of AI. Potentially eligible studies were identified using novel software powered by natural language processing (NLP) and machine learning (ML) technologies dedicated to systematic reviews. Out of 1238 articles identified, 115 were included in the final analysis. Available articles addressed the role of AI in several areas of interest. In the preoperative phase, AI can be used to define tailored treatment algorithms, support clinical decision-making, assess the risk of complications, and predict surgical outcomes and survival. Intraoperatively, AI-enhanced surgery and integration of AI in robotic platforms have been suggested. After surgery, AI can be implemented in the Enhanced Recovery after Surgery (ERAS) pathway. Additional areas of applications included the assessment of patient-reported outcomes, automated pathology assessment, and research. Available data on these aspects are limited, and AI in colorectal surgery is still in its infancy. However, the rapid evolution of technologies makes it likely that it will increasingly be incorporated into everyday practice.
  3. Repici A, Khalaf K, Troncone E, Subramaniam S, Hassan C, Bhandari P, et al.
    Dig Liver Dis, 2024 Feb;56(2):322-329.
    PMID: 37558571 DOI: 10.1016/j.dld.2023.07.026
    BACKGROUND/OBJECTIVE: Increasing infectious rate estimates and low microbiological surveillance affect safety of gastrointestinal endoscopy globally. Single use endoscopes and accessories have been claimed to improve safety, but there is lack of data on their indication and sustainability. We aimed to identify a series of best practice recommendations for the use of single use endoscopes and accessories using a modified Delphi.

    METHODS/DESIGN: Consensus statements for the use of single use endoscopy and accessories were developed using a modified Delphi process, utilizing an international endoscopist expert panel of 62 experts from 33 nations. The main steps in the process were selecting the consensus group, conducting systematic literature reviews, developing statements, and anonymous voting on the statements until consensus was reached. High-risk patients were defined as those with multi-drug-resistant infections, immunosuppressive medication or chemotherapy, post-transplantation, or with severe neutropenia.

    RESULTS: Of the 26 statements that were voted upon through two rounds, 17 statements reached consensus. Category 1: single use accessories (8 statements), related to defining recommendations for the use of single use accessories in all patient populations or high-risk patients. Category 2: clinical indication for single use endoscopes (9 statements), including indications to high-risk patients, protecting the endoscope apparatus and contamination measures in endoscopy units. Category 3: technical factors (4 statements), related to superior performance and technical specifications with the new innovation. Category 4: environmental issues (2 statements), concerning mechanisms that reduce the detrimental burden to the environment. Category 5: financial implications (3 statements), related to healthcare policies, cost neutrality and other financial associations of single use endoscopy.

    CONCLUSIONS: This is the first international initiative in determining clinical indications for single use endoscopy and accessories. The study's findings should serve as a framework for future physicians to guide future research and aid the proper evidence-based indications for the implementation of single use endoscopes in clinical practice.

  4. Spadaccini M, Giacchetto CM, Fiacca M, Colombo M, Andreozzi M, Carrara S, et al.
    Diagnostics (Basel), 2023 Dec 08;13(24).
    PMID: 38132207 DOI: 10.3390/diagnostics13243623
    Endoscopic retrograde cholangiopancreatography (ERCP) is considered the preferred method for managing biliary obstructions. However, the prevalence of surgically modified anatomies often poses challenges, making the standard side-viewing duodenoscope unable to reach the papilla in most cases. The increasing instances of surgically altered anatomies (SAAs) result from higher rates of bariatric procedures and surgical interventions for pancreatic malignancies. Conventional ERCP with a side-viewing endoscope remains effective when there is continuity between the stomach and duodenum. Nonetheless, percutaneous transhepatic biliary drainage (PTBD) or surgery has historically been used as an alternative for biliary drainage in malignant or benign conditions. The evolving landscape has seen various endoscopic approaches tailored to anatomical variations. Innovative methodologies such as cap-assisted forward-viewing endoscopy and enteroscopy have enabled the performance of ERCP. Despite their utilization, procedural complexities, prolonged durations, and accessibility challenges have emerged. As a result, there is a growing interest in novel enteroscopy and endoscopic ultrasound (EUS) techniques to ensure the overall success of endoscopic biliary drainage. Notably, EUS has revolutionized this domain, particularly through several techniques detailed in the review. The rendezvous approach has been pivotal in this field. The antegrade approach, involving biliary tree puncturing, allows for the validation and treatment of strictures in an antegrade fashion. The EUS-transmural approach involves connecting a tract of the biliary system with the GI tract lumen. Moreover, the EUS-directed transgastric ERCP (EDGE) procedure, combining EUS and ERCP, presents a promising solution after gastric bypass. These advancements hold promise for expanding the horizons of comprehensive and successful biliary drainage interventions, laying the groundwork for further advancements in endoscopic procedures.
  5. Koleth G, Emmanue J, Spadaccini M, Mascagni P, Khalaf K, Mori Y, et al.
    Endosc Int Open, 2022 Nov;10(11):E1474-E1480.
    PMID: 36397868 DOI: 10.1055/a-1907-6569
    Background and study aims  Artificial intelligence (AI) is set to impact several fields within gastroenterology. In gastrointestinal endoscopy, AI-based tools have translated into clinical practice faster than expected. We aimed to evaluate the status of research for AI in gastroenterology while predicting its future applications. Methods  All studies registered on Clinicaltrials.gov up to November 2021 were analyzed. The studies included used AI in gastrointestinal endoscopy, inflammatory bowel disease (IBD), hepatology, and pancreatobiliary diseases. Data regarding the study field, methodology, endpoints, and publication status were retrieved, pooled, and analyzed to observe underlying temporal and geographical trends. Results  Of the 103 study entries retrieved according to our inclusion/exclusion criteria, 76 (74 %) were based on AI application to gastrointestinal endoscopy, mainly for detection and characterization of colorectal neoplasia (52/103, 50 %). Image analysis was also more frequently reported than data analysis for pancreaticobiliary (six of 10 [60 %]), liver diseases (eight of nine [89 %]), and IBD (six of eight [75 %]). Overall, 48 of 103 study entries (47 %) were interventional and 55 (53 %) observational. In 2018, one of eight studies (12.5 %) were interventional, while in 2021, 21 of 34 (61.8 %) were interventional, with an inverse ratio between observational and interventional studies during the study period. The majority of the studies were planned as single-center (74 of 103 [72 %]) and more were in Asia (45 of 103 [44 %]) and Europe (44 of 103 [43 %]). Conclusions  AI implementation in gastroenterology is dominated by computer-aided detection and characterization of colorectal neoplasia. The timeframe for translational research is characterized by a swift conversion of observational into interventional studies.
  6. Spadaccini M, Hassan C, Alfarone L, Da Rio L, Maselli R, Carrara S, et al.
    Gastrointest Endosc, 2022 Jan 04.
    PMID: 34995639 DOI: 10.1016/j.gie.2021.12.031
    BACKGROUND AND AIMS: Artificial Intelligence (AI) has been shown to be effective in polyp detection, and multiple computer-aided detection (CADe) system have been developed. False positive (FP) activation emerged as a possible way to benchmark CADe performances in clinical practice. The aim of this study is to validate a previously developed classification of FP comparing the performances of different brands of approved CADe systems.

    METHODS: We compared 2 different consecutive video libraries (40 video per arm) collected at Humanitas Research Hospital with 2 different CADe system brands (CADe A and CADe B). For each video, the number of CADe false activations, the cause and the time spent by the endoscopist to examine the area erroneously highlighted were reported. The FP activations were classified according to the previously developed classification of false positives (the NOISE classification) according to their cause and relevance.

    RESULTS: A total of 1021 FP activations were registered across the 40 videos of the Group A (25.5±12.2 FPs per colonoscopy). A comparable number of FPs were identified in the Group B (n=1028, mean:25.7±13.2 FPs per colonoscopy) (p 0.53). Among them, 22.9±9.9 (89.8%, Group A), and 22.1±10.0 (86.0%, Group B) were due to artifacts from bowel wall. Conversely, 2.6±1.9 (10.2%) and 3.5±2.1 (14%) were caused by bowel content (p 0.45). Within the Group A each false activation required 0.2±0.9 seconds, with 1.6±1.0 (6.3%) FPs requiring additional time for endoscopic assessment. Comparable results were reported within the Group B with 0.2±0.8 seconds spent per false activation and 1.8±1.2 FPs per colonoscopy requiring additional inspection.

    CONCLUSION: The use of a standardized nomenclature permitted to provide comparable results with either of the 2 recently approved CADe systems.

  7. Bhandari P, Subramaniam S, Bourke MJ, Alkandari A, Chiu PWY, Brown JF, et al.
    Gut, 2020 11;69(11):1915-1924.
    PMID: 32816921 DOI: 10.1136/gutjnl-2020-322329
    The COVID-19 pandemic has had a profound impact on provision of endoscopy services globally as staff and real estate were repurposed. As we begin to recover from the pandemic, a cohesive international approach is needed, and guidance on how to resume endoscopy services safely to avoid unintended harm from diagnostic delays. The aim of these guidelines is to provide consensus recommendations that clinicians can use to facilitate the swift and safe resumption of endoscopy services. An evidence-based literature review was carried out on the various strategies used globally to manage endoscopy during the COVID-19 pandemic and control infection. A modified Delphi process involving international endoscopy experts was used to agree on the consensus statements. A threshold of 80% agreement was used to establish consensus for each statement. 27 of 30 statements achieved consensus after two rounds of voting by 34 experts. The statements were categorised as pre-endoscopy, during endoscopy and postendoscopy addressing relevant areas of practice, such as screening, personal protective equipment, appropriate environments for endoscopy and infection control precautions, particularly in areas of high disease prevalence. Recommendations for testing of patients and for healthcare workers, appropriate locations of donning and doffing areas and social distancing measures before endoscopy are unique and not dealt with by any other guidelines. This international consensus using a modified Delphi method to produce a series of best practice recommendations to aid the safe resumption of endoscopy services globally in the era of COVID-19.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links