Displaying all 2 publications

Abstract:
Sort:
  1. Nguyen DH, Vo TNN, Nguyen NT, Ching YC, Hoang Thi TT
    PLoS One, 2020;15(9):e0239360.
    PMID: 32960911 DOI: 10.1371/journal.pone.0239360
    Exploiting plant extracts to form metallic nanoparticles has been becoming the promising alternative routes of chemical and physical methods owing to environmentally friendly and abundantly renewable resources. In this study, Momordica charantia and Psidium guajava leaf extract (MC.broth and PG.broth) are exploited to fabricate two kinds of biogenic silver nanoparticles (MC.AgNPs and PG.AgNPs). Phytoconstituent screening is performed to identify the categories of natural compounds in MC.broth and PG.broth. Both extracts contain wealthy polyphenols which play a role of reducing agent to turn silver (I) ions into silver nuclei. Trace alkaloids, rich saponins and other oxygen-containing compounds creating the organic corona surrounding nanoparticles act as stabilizing agents. MC.AgNPs and PG.AgNPs are characterized by UV-vis and FTIR spectrophotometry, EDS and TEM techniques. FTIR spectra indicate the presence of O-H, C = O, C-O-C and C = C groups on the surface of silver nanoparticles which is corresponded with three elements of C, O and Ag found in EDS analysis. TEM micrographs show the spherical morphology of MC.AgNPs and PG.AgNPs. MC.AgNPs were 17.0 nm distributed in narrow range of 5-29 nm, while the average size of PG.AgNPs were 25.7 nm in the range of 5-53 nm. Further, MC.AgNPs and PG.AgNPs exhibit their effectively inhibitory ability against A. niger, A. flavus and F. oxysporum as dose-dependence. Altogether, MC.AgNPs and PG.AgNPs will have much potential in scaled up production and become the promising fungicides for agricultural applications.
  2. Nguyen DH, Lee JS, Park KD, Ching YC, Nguyen XT, Phan VHG, et al.
    Nanomaterials (Basel), 2020 Mar 17;10(3).
    PMID: 32192177 DOI: 10.3390/nano10030542
    Phytoconstituents presenting in herbal plant broths are the biocompatible, regenerative, and cost-effective sources that can be utilized for green synthesis of silver nanoparticles. Different plant extracts can form nanoparticles with specific sizes, shapes, and properties. In the study, we prepared silver nanoparticles (P.uri.AgNPs, P.zey.AgNPs, and S.dul.AgNPs) based on three kinds of leaf extracts (Phyllanthus urinaria, Pouzolzia zeylanica, and Scoparia dulcis, respectively) and demonstrated the antifungal capacity. The silver nanoparticles were simply formed by adding silver nitrate to leaf extracts without using any reducing agents or stabilizers. Formation and physicochemical properties of these silver nanoparticles were characterized by UV-vis, Fourier transforms infrared spectroscopy, scanning electron microscope, transmission electron microscope, and energy dispersive X-ray spectroscopy. P.uri.AgNPs were 28.3 nm and spherical. P.zey.AgNPs were 26.7 nm with hexagon or triangle morphologies. Spherical S.dul.AgNPs were formed and they were relatively smaller than others. P.uri.AgNPs, P.zey.AgNPs and S.dul.AgNPs exhibited the antifungal ability effective against Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum, demonstrating their potentials as fungicides in the biomedical and agricultural applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links