Agrobacterium-mediated transformation of indica rice is undoubtedly a challenging task due to the rice recalcitrant nature to transformation process. Therefore, optimization of the transformation protocol is important for specific indica rice cultivar to ensure effectiveness of the transformation. In this study, crucial parameters affecting Agrobacteriummediated transformation were optimized to obtain transgenic rice of local rice cultivar (indica MR219). Embryogenic calli were chosen for inoculation with Agrobacterium tumefaciens strain LBA4404 harbouring a binary vector pH2GW7ABP57 containing gene of interest, Auxin binding protein 57 (Abp57). The parameters that have been optimized were the immersion time, co-cultivation period, acetosyringone concentration and co-cultivation temperature. A total of four days co-cultivation period and 30 min immersion of embryogenic callus are optimum for the transformation of MR219 with transformation efficiency of 26.4% and 16.0%, respectively. Acetosyringone at 200 μM and co-cultivation at 28°C also gave the highest transformation efficiency (14.4 and 18.4%, respectively). Meanwhile, inclusion of 20 g/L maltose+20 g/L sorbitol into the regeneration media has significantly improve the transformed somatic embryos growth and increase the regeneration efficiency up to 40.0%. The results of polymerase chain reaction (PCR) and reverse transcription-polymerase chain reaction (RT-PCR) indicated that the transgene was successfully integrated and overexpressed in transgenic rice of MR219. In conclusion, significant improvement in transformation efficiency for rice cv. MR219 has been obtained by using the optimised protocol for transformation and regeneration developed in this study.
Vibriosis is a prevalent aquatic disease caused by Vibrio species and has led to massive loss of brown-marbled grouper, Epinephelus fuscoguttatus. The complexity of molecular mechanisms associated with immune defence can be studied through transcriptomics analysis. High quality and quantity of total RNAs are crucial for the veracity of RNA sequencing and gene expression analysis. A low quality RNA will compromise downstream analysis, resulting in loss of time and revenue to re-acquire the data again. Thus, a reliable and an efficient RNA isolation method is the first and most important step to obtain high quality RNA for gene expression studies. There are many aspects need to be considered when deciding an extraction method, such as the cost-effectiveness of the protocol, the duration of chemical exposure, the duration required for a complete extraction and the number of sample-transferring. A good RNA extraction protocol must be able to produce high yield and purity of RNA free from enzyme inhibitors, such as nucleases (RNase), phenols, alcohols or other chemicals carryover, apart from protein and genomic DNA contamination, to maintain isolated RNA integrity in storage condition. In this study, TransZolTM Up produced clean and pure RNA samples from control gills only but not from the infected gill and whole-body tissues. Modified conventional CTAB (conventional hexadecyltrimethylammonium bromide) method was then used as an alternative method to isolate RNA from gill and whole-body tissues of Vibrio-infected E. fuscoguttatus. Modified CTAB method produced intact RNA on gel electrophoresis with higher RIN number (>6.5) for infected gill and whole-body tissues, suggesting that this method could also be used to isolate high quality RNA from fish samples. Therefore, this method is potentially suitable to be used to extract RNA from other fish species especially those that have been infected.
Microbial production of natural products using metabolic engineering and synthetic biology approaches often involves
the assembly of multiple gene fragments including regulatory elements, especially when using eukaryotes as hosts.
Traditional cloning strategy using restriction enzyme digestion and ligation are laborious and inflexible owing to the
high number of sequential cloning steps, limited cutting sites and generation of undesired ‘scar’ sequences. In this study,
a homology-based isothermal DNA assembly method was carried out for one-step simultaneous assembly of multiple DNA
fragments to engineer plant phenylpropanoid biosynthesis in Saccharomyces cerevisiae. Rapid construction of yeast
plasmid harboring dual gene expression cassettes was achieved via isothermal assembly of four DNA fragments designed
with 20 bp overlapping sequences. The rate-limiting enzyme of phenylpropanoid pathway, cinnamate 4-hydroxylase
encoded by C4H gene from Polygonum minus was cloned in tandem with yeast promoter and terminator elements of S.
cerevisiae for efficient construction of phenylpropanoid biosynthetic pathway in recombinant yeast. The assembled pAGCAT (C4H-ADH1t-TEF1p) shuttle plasmid and transformation of S. cerevisiae with the plant C4H gene were confirmed
via PCR analysis. Based on these findings, the yeast shuttle plasmid harboring P. minus phenylpropanoid biosynthesis
gene was efficiently constructed to be the starting platform for the production of plant natural products in geneticallyengineered S. cerevisiae.