Displaying all 6 publications

Abstract:
Sort:
  1. Tong CY, Honda K, Derek CJC
    Sci Total Environ, 2024 Jan 01;906:167576.
    PMID: 37804964 DOI: 10.1016/j.scitotenv.2023.167576
    Research on renewable energy from microalgae has led to a growing interest in porous substrate photobioreactors, but their widespread adoption is currently limited to pure microalgal biofilm cultures. The behavior of microalgal-bacterial biofilms immobilized on microporous substrates remains as a research challenge, particularly in uncovering their mutualistic interactions in environment enriched with dissolved organic matter. Therefore, this study established a novel culture platform by introducing microalgal-derived bio-coating that preconditioned hydrophilic polyvinylidene fluoride membranes for the microalgal-bacterial biofilm growth of freshwater microalgae, Chlorella vulgaris ESP 31 and marine microalgae, Cylindrotheca fusiformis with bacteria, Escherichia coli. In the attached co-culture mode, the bio-coating we proposed demonstrated the ability to enhance microalgal growth for both studied species by a range of 2.5 % to 19 % starting from day 10 onwards. Additionally, when compared to co-culture on uncoated membranes, the bio-coating exhibited a significant bacterial growth promotion effect, increasing bacterial growth by at least 2.35 times for the C. vulgaris-E. coli co-culture after an initial adaptation phase. A significant increase of at least 72 % in intracellular biochemical compounds (including chlorophyll, polysaccharides, proteins, and lipids) was observed within just five days, primarily due to the high concentration of pre-coated organic matter, mainly sourced from the internal organic matter (IOM) of C. fusiformis. Higher accumulation of organic compounds in the bio-coating indirectly triggers a competition between microalgae and bacteria which potentially stimulate the production of additional intra-/extra-organic substances as a defensive response. In short, insight gained from this study may represent a paradigm shift in the ways that symbiotic interactions are promoted to increase the yield of specific bio-compounds with the presence of bio-coating.
  2. Tong CY, Honda K, Derek CJC
    Environ Res, 2023 Jul 01;228:115872.
    PMID: 37054838 DOI: 10.1016/j.envres.2023.115872
    Mass microalgal-bacterial co-cultures have come to the fore of applied physiological research, in particularly for the optimization of high-value metabolite from microalgae. These co-cultures rely on the existence of a phycosphere which harbors unique cross-kingdom associations that are a prerequisite for the cooperative interactions. However, detailed mechanisms underpinning the beneficial bacterial effects onto microalgal growth and metabolic production are rather limited at the moment. Hence, the main purpose of this review is to shed light on how bacteria fuels microalgal metabolism or vice versa during mutualistic interactions, building upon the phycosphere which is a hotspot for chemical exchange. Nutrients exchange and signal transduction between two not only increase the algal productivity, but also facilitate in the degradation of bio-products and elevate the host defense ability. Main chemical mediators such as photosynthetic oxygen, N-acyl-homoserine lactone, siderophore and vitamin B12 were identified to elucidate beneficial cascading effects from the bacteria towards microalgal metabolites. In terms of applications, the enhancement of soluble microalgal metabolites is often associated with bacteria-mediated cell autolysis while bacterial bio-flocculants can aid in microalgal biomass harvesting. In addition, this review goes in depth into the discussion on enzyme-based communication via metabolic engineering such as gene modification, cellular metabolic pathway fine-tuning, over expression of target enzymes, and diversion of flux toward key metabolites. Furthermore, possible challenges and recommendations aimed at stimulating microalgal metabolite production are outlined. As more evidence emerges regarding the multifaceted role of beneficial bacteria, it will be crucial to incorporate these findings into the development of algal biotechnology.
  3. Tong CY, Kee CY, Honda K, Derek CJC
    Environ Res, 2023 Dec 15;239(Pt 2):117403.
    PMID: 37848079 DOI: 10.1016/j.envres.2023.117403
    Bio-coating, a recent and promising approach in attached microalgal cultivation systems, has garnered attention due to its efficiency in enhancing immobilized algal growth, particularly in submerged cultivation systems. However, when the cells are cultured on thin solid microporous substrates that physically separate them from the nutrient medium, it remains unclear whether the applied bio-coatings still have a significant impact on algal growth or the subsequent rates of algal organic matter (AOM) release. Therefore, this current work investigated the role of bio-coatings on the microalgal monoculture growth of one freshwater species, Chlorella vulgaris ESP 31, and one marine species, Cylindrotheca fusiformis on a hydrophilic substrate, polyvinylidene fluoride membrane in a permeated cultivation system. Wide range of bio-coating sources were adapted, with the result demonstrating that bacteria-derived coating promoted algal growth by as high as 140% when compared with the control group for both species. Interestingly, two distinct adaptation mechanisms were observed between the species, with only C. fusiformis demonstrating a positive correlation between cell growth and AOM productivity, particularly in its extracellularly bound fractions. It is worth noting that despite this specific fraction exhibiting the lowest content among all; it displayed significant relevance in terms of AOM productivity. High extracellular protein-to-polysaccharide ratio (>5.7 fold) quantified on bacterial intracellular exudate-coated membranes indirectly revealed an underlying symbiotic microalgal-bacterial interaction. This is the first study showing how bio-coating influenced AOM yield without any physical interaction between microalgae and bacteria. It further confirms the practical benefits of bio-coating in attached cultivation systems.
  4. Ramanan D, Bowcutt R, Lee SC, Tang MS, Kurtz ZD, Ding Y, et al.
    Science, 2016 Apr 29;352(6285):608-12.
    PMID: 27080105 DOI: 10.1126/science.aaf3229
    Increasing incidence of inflammatory bowel diseases, such as Crohn's disease, in developed nations is associated with changes to the microbial environment, such as decreased prevalence of helminth colonization and alterations to the gut microbiota. We find that helminth infection protects mice deficient in the Crohn's disease susceptibility gene Nod2 from intestinal abnormalities by inhibiting colonization by an inflammatory Bacteroides species. Resistance to Bacteroides colonization was dependent on type 2 immunity, which promoted the establishment of a protective microbiota enriched in Clostridiales. Additionally, we show that individuals from helminth-endemic regions harbor a similar protective microbiota and that deworming treatment reduced levels of Clostridiales and increased Bacteroidales. These results support a model of the hygiene hypothesis in which certain individuals are genetically susceptible to the consequences of a changing microbial environment.
  5. Ong WD, Okubo-Kurihara E, Kurihara Y, Shimada S, Makita Y, Kawashima M, et al.
    Plant Cell Physiol, 2017 01 01;58(1):95-105.
    PMID: 28011868 DOI: 10.1093/pcp/pcw181
    Plants have a remarkable ability to perceive and respond to various wavelengths of light and initiate regulation of different cascades of light signaling and molecular components. While the perception of red light and the mechanisms of its signaling involving phytochromes are largely known, knowledge of the mechanisms of blue light signaling is still limited. Chemical genetics involves the use of diverse small active or synthetic molecules to evaluate biological processes. By combining chemicals and analyzing the effects they have on plant morphology, we identified a chemical, 3-bromo-7-nitroindazole (3B7N), that promotes hypocotyl elongation of wild-type Arabidopsis only under continuous blue light. Further evaluation with loss-of-function mutants confirmed that 3B7N inhibits photomorphogenesis through cryptochrome-mediated light signaling. Microarray analysis demonstrated that the effect of 3B7N treatment on gene expression in cry1cry2 is considerably smaller than that in the wild type, indicating that 3B7N specifically interrupts cryptochrome function in the control of seedling development in a light-dependent manner. We demonstrated that 3B7N directly binds to CRY1 protein using an in vitro binding assay. These results suggest that 3B7N is a novel chemical that directly inhibits plant cryptochrome function by physical binding. The application of 3B7N can be used on other plants to study further the blue light mechanism and the genetic control of cryptochromes in the growth and development of plant species.
  6. Honda K, Katzke VA, Hüsing A, Okaya S, Shoji H, Onidani K, et al.
    Int J Cancer, 2019 Apr 15;144(8):1877-1887.
    PMID: 30259989 DOI: 10.1002/ijc.31900
    Recently, we identified unique processing patterns of apolipoprotein A2 (ApoA2) in patients with pancreatic cancer. Our study provides a first prospective evaluation of an ApoA2 isoform ("ApoA2-ATQ/AT"), alone and in combination with carbohydrate antigen 19-9 (CA19-9), as an early detection biomarker for pancreatic cancer. We performed ELISA measurements of CA19-9 and ApoA2-ATQ/AT in 156 patients with pancreatic cancer and 217 matched controls within the European EPIC cohort, using plasma samples collected up to 60 months prior to diagnosis. The detection discrimination statistics were calculated for risk scores by strata of lag-time. For CA19-9, in univariate marker analyses, C-statistics to distinguish future pancreatic cancer patients from cancer-free individuals were 0.80 for plasma taken ≤6 months before diagnosis, and 0.71 for >6-18 months; for ApoA2-ATQ/AT, C-statistics were 0.62, and 0.65, respectively. Joint models based on ApoA2-ATQ/AT plus CA19-9 significantly improved discrimination within >6-18 months (C = 0.74 vs. 0.71 for CA19-9 alone, p = 0.022) and ≤ 18 months (C = 0.75 vs. 0.74, p = 0.022). At 98% specificity, and for lag times of ≤6, >6-18 or ≤ 18 months, sensitivities were 57%, 36% and 43% for CA19-9 combined with ApoA2-ATQ/AT, respectively, vs. 50%, 29% and 36% for CA19-9 alone. Compared to CA19-9 alone, the combination of CA19-9 and ApoA2-ATQ/AT may improve detection of pancreatic cancer up to 18 months prior to diagnosis under usual care, and may provide a useful first measure for pancreatic cancer detection prior to imaging.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links