Displaying all 5 publications

Abstract:
Sort:
  1. Yamamoto T, Tsunematsu Y, Noguchi H, Hotta K, Watanabe K
    Org. Lett., 2015 Oct 16;17(20):4992-5.
    PMID: 26414728 DOI: 10.1021/acs.orglett.5b02435
    Successful activation of the pyranonigrin biosynthetic gene cluster and gene knockout in Aspergillus niger plus in vivo and in vitro assays led to isolation of six new products, including a spiro cyclobutane-containing dimeric compound, which served as the basis for the proposed comprehensive pyranonigrin biosynthetic pathway. Two redox enzymes are key to forming the characteristic fused γ-pyrone core, and a protease homologue performs the exo-methylene formation.
  2. Hassan MI, McSorley FR, Hotta K, Boddy CN
    J Vis Exp, 2017 06 27.
    PMID: 28715370 DOI: 10.3791/55187
    Co-expression of multiple proteins is increasingly essential for synthetic biology, studying protein-protein complexes, and characterizing and harnessing biosynthetic pathways. In this manuscript, the use of a highly effective system for the construction of multigene synthetic operons under the control of an inducible T7 RNA polymerase is described. This system allows many genes to be expressed simultaneously from one plasmid. Here, a set of four related vectors, pMGX-A, pMGX-hisA, pMGX-K, and pMGX-hisK, with either the ampicillin or kanamycin resistance selectable marker (A and K) and either possessing or lacking an N-terminal hexahistidine tag (his) are disclosed. Detailed protocols for the construction of synthetic operons using this vector system are provided along with the corresponding data, showing that a pMGX-based system containing five genes can be readily constructed and used to produce all five encoded proteins in Escherichia coli. This system and protocol enables researchers to routinely express complex multi-component modules and pathways in E. coli.
  3. Yamamoto T, Tsunematsu Y, Hara K, Suzuki T, Kishimoto S, Kawagishi H, et al.
    Angew Chem Int Ed Engl, 2016 05 17;55(21):6207-10.
    PMID: 27072782 DOI: 10.1002/anie.201600940
    Geometric isomerization can expand the scope of biological activities of natural products. The observed chemical diversity among the pseurotin-type fungal secondary metabolites is in part generated by a trans to cis isomerization of an olefin. In vitro characterizations of pseurotin biosynthetic enzymes revealed that the glutathione S-transferase PsoE requires participation of the bifunctional C-methyltransferase/epoxidase PsoF to complete the trans to cis isomerization of the pathway intermediate presynerazol. The crystal structure of the PsoE/glutathione/presynerazol complex indicated stereospecific glutathione-presynerazol conjugate formation is the principal function of PsoE. Moreover, PsoF was identified to have an additional, unexpected oxidative isomerase activity, thus making it a trifunctional enzyme which is key to the complexity generation in pseurotin biosynthesis. Through the study, we identified a novel mechanism of accomplishing a seemingly simple trans to cis isomerization reaction.
  4. Hotta K, Ranganathan S, Liu R, Wu F, Machiyama H, Gao R, et al.
    PLoS Comput Biol, 2014 Apr;10(4):e1003532.
    PMID: 24722239 DOI: 10.1371/journal.pcbi.1003532
    Mechanical stretch-induced tyrosine phosphorylation in the proline-rich 306-residue substrate domain (CasSD) of p130Cas (or BCAR1) has eluded an experimentally validated structural understanding. Cellular p130Cas tyrosine phosphorylation is shown to function in areas without internal actomyosin contractility, sensing force at the leading edge of cell migration. Circular dichroism shows CasSD is intrinsically disordered with dominant polyproline type II conformations. Strongly conserved in placental mammals, the proline-rich sequence exhibits a pseudo-repeat unit with variation hotspots 2-9 residues before substrate tyrosine residues. Atomic-force microscopy pulling experiments show CasSD requires minimal extension force and exhibits infrequent, random regions of weak stability. Proteolysis, light scattering and ultracentrifugation results show that a monomeric intrinsically disordered form persists for CasSD in solution with an expanded hydrodynamic radius. All-atom 3D conformer sampling with the TraDES package yields ensembles in agreement with experiment when coil-biased sampling is used, matching the experimental radius of gyration. Increasing β-sampling propensities increases the number of prolate conformers. Combining the results, we conclude that CasSD has no stable compact structure and is unlikely to efficiently autoinhibit phosphorylation. Taking into consideration the structural propensity of CasSD and the fact that it is known to bind to LIM domains, we propose a model of how CasSD and LIM domain family of transcription factor proteins may function together to regulate phosphorylation of CasSD and effect machanosensing.
  5. Sato M, Yagishita F, Mino T, Uchiyama N, Patel A, Chooi YH, et al.
    Chembiochem, 2015 Nov 2;16(16):2294-8.
    PMID: 26360642 DOI: 10.1002/cbic.201500386
    Understanding enzymatic Diels-Alder (DA) reactions that can form complex natural product scaffolds is of considerable interest. Sch 210972 1, a potential anti-HIV fungal natural product, contains a decalin core that is proposed to form through a DA reaction. We identified the gene cluster responsible for the biosynthesis of 1 and heterologously reconstituted the biosynthetic pathway in Aspergillus nidulans to characterize the enzymes involved. Most notably, deletion of cghA resulted in a loss of stereoselective decalin core formation, yielding both an endo (1) and a diastereomeric exo adduct of the proposed DA reaction. Complementation with cghA restored the sole formation of 1. Density functional theory computation of the proposed DA reaction provided a plausible explanation of the observed pattern of product formation. Based on our study, we propose that lipocalin-like CghA is responsible for the stereoselective intramolecular [4+2] cycloaddition that forms the decalin core of 1.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links